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Abstract 
 
Using neural networks, the present study replicates previous results on the prediction of student 
dropout obtained with decision trees and logistic regressions. For this purpose, multilayer 
perceptrons are trained on the same data as in the initial study. It is shown that neural networks 
lead to a significant improvement in the prediction of students at risk. Already after the first 
semester, potential dropouts can be identified with a probability of 95 percent. 
Keywords: neural networks, student dropout, replication study. 
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1. Introduction 

Dropout is a widespread problem in the German higher education system. About 30 percent 
of students in Germany do not complete their studies (Heublein U. , 2014; Heublein, et al., 
2017).  At the same time, more knowledge-intensive production processes and demographic 
change are increasingly leading to a shortage of skilled workers in the German labor market 
and thus to an increased demand for university graduates. The shortage of skilled workers is 
particularly critical in the STEM subjects - these subject areas also have high dropout rates 
(Hetze, 2011). Dropout is therefore associated with sensitive costs not only for students and 
universities, but also for the development of society as a whole. 

Early detection systems, as recent work has shown (Kemper, Vorhoff, & Wigger, 2020; Berens, 
Schneider, Gortz, Oster, & Burghoff, 2019; Ram, Wang, Currim, & Currim, 2018), can be a 
valuable addition to higher education institutions' efforts to detect dropout. In this regard, 
identifying at-risk students represents a critical first step in addressing dropout with targeted 
interventions such as learning assistance or mentoring programs. It enables a targeted and 
thus efficient use of the scarce educational and administrative resources of a university. 

This is where the present paper comes in and expands on a previous approach. The starting 
point is the paper by Kemper et al. (2020).  This paper describes the methodology and the 
results of a case study conducted on study progress data of the Faculty of Economics at the 
Karlsruhe Institute of Technology (KIT). The study shows that study success can be identified 
with respectable estimation accuracies of 85 percent in the first study semester and up to 95 
percent in the third study semester already with relatively simple procedures and on a data 
basis that is not subject to data protection laws. 

The paper by Kemper et al. (2020) employs decision trees and logit models for classification. 
The present paper aims to replicate the results of Kemper et al. (2020) using neural networks. 
For this purpose, multilayer perceptrons (MLP) will be trained on the same data and their 
prediction performance will be compared with the results of the initial study. 

Due to their complex structure, neural networks can represent complicated relationships very 
well and thus achieve excellent performance.  The main advantage over decision trees and 
especially logit models is that they can approximate nonlinear data structures with a large 
number of variables with arbitrary accuracy (Huang, 2003). Thus, complexity and 
intransparency of a data structure can be better revealed (Wiedmann & Jung, 2003, p. 49). At 
the same time, they have excellent generalization properties and are robust to data 
imperfections due to their parallelization properties (Zell, 2003, p. 27). 

As this paper shows, the advantages of neural networks also manifest themselves in predicting 
student dropout. To this end, this paper first presents the main results of the initial study in 
the second chapter. In the third chapter, the data basis is explained. The fourth chapter 
develops the methodology used. The fifth chapter presents the results. The sixth chapter 
discusses key findings. The seventh chapter briefly concludes. 
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2. Main Findings of Initial Study  

The initial study by Kemper et al. (2020) investigated the prediction of dropout with decision 
trees (DT) and logit models (logistic regression, LR) based on study progression data and a few 
applicant data. The results show that dropout can be identified with these models after the 
first and after the third semester with an accuracy of 85 and 95percent, respectively (cf. Table 
5 in Appendix A). If one considers the sensitivity, which only refers to the correct classification 
of dropouts, the estimation accuracy drops to 63 and 90 percent. The ROC curves shown in 
Figure 1 (left) illustrate the improvement of the prediction quality through the addition of 
further semesters. 

 
Figure 1: ROC-curves of the decision trees and logit models of the initial study (by Kemper et al. (2020)) 

The decision trees usually lead to slightly better results in terms of estimation accuracy than 
the logit models (cf. Table 5 in Appendix A). In relation to the other performance measures, 
however, no meaningful difference can be discerned. Figure 1 (right) shows exemplarily for 
the first semester that decision trees and logit models hardly differ. 

The dataset used contains significantly fewer dropouts than successes. In order to focus the 
classification on dropouts, the initial study uses synthetically balanced datasets in addition to 
the unbalanced datasets. The results are clear: all models trained on balanced datasets classify 
dropouts significantly better and study successes worse than the models trained on the 
unbalanced datasets (cf. Figure 1 left). 

3. Data 

The data basis depends on the initial study. Applicant data considered are gender, age and 
nationality. The study progress data used are the grade, number of participants, status 
(passed, failed, failed at last attempt), exam ID and date of the exam for each exam and 
module. In addition, the enrolment date and final result (completion, dropout, in active study) 
are known for each student. As in the original study, data is used for the period from October 
2002 up to and including October 2016. This results in a data basis of 327,144 observations of 
examinations and modules of 5,168 students. By 2016, 2,556 students had successfully 
completed their studies and 620 had dropped out. 
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Data cleaning, formatting, selection and extraction are identical to the initial study to ensure 
comparability of results. Table 1 provides an overview of the final variables used for the 
analysis and their value ranges. 

After pre-processing, different datasets were generated for training the neural networks. 
Table 8 in Appendix B provides a list of the datasets used. The datasets differ in the number 
of semesters they contain. Since the aim of this work is to make predictions as early as possible 
but still reliably, three datasets were created for the neural networks, containing only the first 
semester, the first and second semesters and finally all three semesters. 

Table 1: Overview of the feature space  

Variable Type Value range Description 

Student ID Nominal  Anonymous ID 
Success Nominal 0 = dropout 

1 = success 
2 = enrolled 

Indicator for student status 

Endat Datum 01.10.07 – 01.01.12 Date of enrolment 
Sex_m Nominal 0 = female 

1 = male 
Gender  

Staat_d Nominal 0 = not german 
1 = german 

Origin 

Age Dezimal 17 to 24 per year 
> 24 per five years  

Age at enrolment 

Pnr Nominal  Exam ID 
X_pnote Dezimal 1.0 bis 5.0 Grade in exam X 
X_pstatus Nominal 0 = failed 

1 = passed 
2 = applied 

Result in exam X 

X_sem Nominal 1 bis 3 Semester of exam X 

Note_avg Dezimal 1.0 to 5.0 Average grade in all exams 
Avg_be Dezimal 1.0 to 5.0 Average grade in all passed exams 
Sem_max Nominal 1 to 3 Semester of last exam 
P_count Integer ≥ 0 Number of exams 
Be_count Integer ≥ 0 Number of passed exams 
Nb_count Integer ≥ 0 Number of failed exams 

 

Another aspect in which the datasets differ is the number of variables. A prediction based 
purely on the extracted variables would offer the possibility of using a much smaller model 
with a small number of input variables. By limiting the model to aggregate variables, data 
protection concerns could also be more effectively mitigated in the actual application. In order 
to evaluate a possible limitation of the model, further datasets were therefore generated, 
which contain only the extracted variables in addition to the applicant data. 

Due to the unequal distribution of dropouts and successful completions (ratio 1:4.13), the 
initial dataset is unbalanced. In the case of unbalanced datasets, machine methods tend to 
learn the identification of the majority class (in this case, study successes) preferentially. When 
predicting dropouts, the aim is to predict students who are at risk of dropping out and 
therefore, to identify the minority class. Previous studies show that balancing datasets can 
reduce the classification error related to the minority class and, additionally, increase the 
accuracy of the classification of the entire dataset (Delen, 2010). Therefore, in order to focus 
the machine learning procedure on the detection of dropouts, synthetically balanced datasets 
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were used alongside the unbalanced datasets. Like the initial study, this work uses SMOTE 
(Synthetic Minority Over-sampling Technique) to generate synthetically balanced datasets 
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002). 

In summary, twelve datasets were generated for the neural networks, differing in the number 
of semesters, in the number of variables and in the use of balanced data.  

4. Method 

The prediction of dropout is a classification problem with a binary target variable (dropout or 
success). In order to classify the target variable with neural networks, the applicant and study 
progress data (raw data) received from KIT were first preprocessed into the final datasets and 
considered descriptively (cf. chapter Data and Kemper et al. (2020)). A neural network (MLP) 
was then trained for each of the datasets. This resulted in twelve different models. During 
training, each dataset was divided into training, validation and test data (70, 20 and 10 
percent). For the selection of the hyperparameters, the neural networks were trained on 
different combinations of values of the hyperparameters with the training data and compared 
using the validation data. The resulting selected models were then trained using a ten-fold 
cross-validation with the training and validation data and evaluated using the test data. 

4.1. Neural Network Training  

Due to their complexity, neural networks are very susceptible to overfitting. To avoid 
overfitting and to check the robustness of the results on the test data, cross-validation was 
therefore carried out both in the selection of the hyperparameters and in the training of the 
resulting networks.  

The optimization of the hyperparameters was carried out using random search. For each 
dataset or neural network, 256 combinations of values were tested. According to the findings 
of Bergstra & Bengio (2012, pp. 291-293), this number is sufficient to obtain good results 
compared to the grid search.  Each combination of values was evaluated using five-fold cross-
validation to reduce variance. Hyperparameters optimized via random search were the 
learning rate, the number of hidden layers and neurons per layer, the choice of activation 
function and the amount of dropout per layer. A total of eight to 14 hyperparameters were 
thus optimized, depending on the number of hidden layers. The other hyperparameters were 
selected manually. An overview of all hyperparameters and the tested values can be found in 
Table 9 in Appendix B. 

Manual selection 

Some hyperparameters could be selected manually. For example, the output layer of all neural 
networks in this work has a single neuron and a Fermi activation function due to the binary 
nature of the problem. Furthermore, the neural networks were trained with the 
backpropagation algorithm. For this purpose, this work used the Adam optimizer by Kingma 
& Ba (2014). Mean square deviation was used for the loss function. 

Another hyperparameter to be selected was the number of epochs over which the neural 
network training runs. If too few epochs are chosen for training, the neural network will not 
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achieve the best possible accuracy. In contrast, an unnecessarily high number of training 
epochs can lead to overfitting of the model (Bengio, 2012, p. 9). For this analysis, therefore, a 
number of 50 training epochs was used and the principle of early stopping was applied. Here, 
the training of the neural network is stopped as soon as there is no longer a significant 
improvement in the generalization error over a previously defined number of epochs. 
According to Bengio (2012, pp. 9-10), early stopping is not only suitable for avoiding overfitting 
due to the number of epochs, but also due to the other hyperparameters. This work uses early 
stopping after ten epochs.  

Besides the number of epochs, the size of the batch is an important hyperparameter: A larger 
batch size allows for a shorter computation time, but also reduces the training progress per 
epoch, since fewer updates of the weights take place (Bengio, 2012, p. 9). In this work, a batch 
size of 128 is used. 

Selection by Random Search 

According to Bengio (2012, S. 8), the learning rate is the most important hyperparameter to 
be optimized: if it is chosen too large, it misses the minimum of the loss function. It was 
therefore tested with random values in the interval [0.00001; 0.01]. With a learning rate of 
0.01, for example, only one hundredth of the calculated training error per batch or epoch is 
corrected by adjusting the weights. In addition, to better determine the minimum of the loss 
function, the principle Reduce Learning Rate on Plateau was used. Here, the learning rate is 
reduced by a fixed factor as soon as the optimizer could not improve the loss function over a 
selected number of epochs. In this work, the factor 0.05 and an adjustment after 10 epochs 
were used.  

The number of hidden layers and the number of neurons per hidden layer were also optimized 
via random search. Figure 2 shows, using the MLP 12B model as an example, that both 
hyperparameters have a clear influence on the prediction quality of the neural networks. The 
architecture of the best model in this example consists of two hidden layers and 256 neurons 
per hidden layer. There is a tendency for a higher number of neurons associated with fewer 
than five hidden layers to give better results for this model. However, a monotonic 
relationship between the two hyperparameters is not evident. 

 
Figure 2: Accuracy of the model 12B with validation data, depending on number of hidden layers and number of 
neurons per hidden layer 
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For the choice of the activation function, the functions ReLu, Fermi and TanH were tested. 

Finally, the amount of the so-called dropout per layer was optimized via random search. 
Dropout is a regularization method that prevents the overfitting of neural networks 
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). For each computational 
step, a previously specified number of neurons of the corresponding hidden layer is switched 
off on a random basis and not considered for the computation. The neurons of the layer thus 
learn fewer specific concepts and the neural network becomes more robust with respect to 
unknown data. In this work, a dropout of 0 to 40 percent was tested for each hidden layer. 

4.2. Network Topology 

This study uses MLP for predicting dropout.1 MLP are forward-looking networks trained with 
the backpropagation algorithm. The term "feedforward" is derived from the absence of any 
feedback within the architecture. Data is read into the network via input neurons, then 
processed in the hidden layers and subsequently made available to the output neurons 
without passing through a layer of the network several times or skipping over different layers. 
Neurons are thus arranged in layers, with each neuron connected to each other neuron of the 
following layer by a weighted edge. 

The optimization of the hyperparameters via random search has resulted in different 
combinations of values for each of the twelve MLPs. Table 2 contains the resulting network 
topology of the MLP 123 model. It consists of an input layer, two hidden layers and an output 
layer. The input layer and the hidden layers are regulated by dropout (see Table 10 in Appendix 
B for the dropout rates). All four layers have a different number of neurons (64, 160, 32 and 
1). 

Table 2: Network architecture of the model MLP 123 

 
 

 
1 We also employed recurrent networks to exploit the temporal structure of the data. However, the results 
showed that sequences of three semesters are too short to achieve a meaningful classification with recurrent 
networks. 
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Table 10 in Appendix B includes all individual hyperparameter values of the respective models. 
The low variation in the learning rate is striking: for most MLPs, a learning rate of 1 percent 
was found, only the models MLP 12EB, 123B and 123E received 0.1 percent as an optimal 
value. For the other hyperparameters, however, no tendency towards specific values can be 
inferred from the results. The best possible number of hidden layers varies in the different 
models from one to three, with two hidden layers in half of the models. A correlation between 
datasets with only extracted and all features, between datasets with balanced and unbalanced 
data or related to the number of semesters considered is not evident. Similarly, the optimal 
number of neurons per layer varies. The dropout rates vary between 0 and 0.4 and thus 
completely cover the tested range of values. Finally, no trend is evident for the activation 
functions either. 

5. Results 

The neural networks used in this study achieve prediction accuracies of 90.6 percent in the 
first semester and 98.1 percent in the third semester on the test data. In particular, the 
identification of dropouts is extraordinarily successful with the corresponding sensitivity 
values of 94.7 and 95.6 per cent. The corresponding kappa values of 85.0 and 91.9 percent 
also show an excellent improvement in the predictive quality of the models compared to 
random models. 

In order to exclude a possible overfitting of the models, their training was carried out within 
the framework of a ten-fold cross-validation. The results show a low variance of the accuracy 
and loss function in the individual runs (cf. Table 11 in Appendix B). The balanced models tend 
to show higher deviations than the unbalanced models. However, there is no overfitting of 
the neural networks in any of the models. Figure 3 shows an example of the results of the 
cross-validation of the MLP 1 model: the accuracy of the model on the respective test data 
(dark blue) fluctuates slightly around the value of the accuracy on the training data (light blue). 

 
Figure 3: Results of the ten-fold cross validation with test data on model MLP 1 

In the following, the results of the different models are considered in detail. Subsequently, the 
robustness of the models is checked with regard to test data from individual semesters.  
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5.1. Multilayer Perceptrons 

A total of twelve models were generated using MLP and by training on different datasets. The 
highest accuracy, sensitivity and kappa values were achieved by model MLP 123B, which was 
trained with synthetically balanced data from the first three semesters including all variables. 
Thus, this model shows the best identification of dropouts as well as the highest improvement 
in predictive performance compared to a randomized model. Table 3 contains the complete 
results of the performance metrics for the individual MLP models. The values are derived from 
the average of the cross-validation runs.  

In all models, the addition of further semesters leads to an improvement in the results. The 
ROC curves of the models illustrate that with increasing number of semesters significantly 
better predictions are possible for both study success and dropouts (cf. Figure 4 and Figure 5). 
Likewise, the values of Accuracy, Sensitivity and Kappa confirm that the overall accuracy, the 
detection of dropouts and the goodness compared to random models improves strictly 
monotonically with increasing number of semesters. 

Table 3: Results of the performance metrics on all models with test data (highest values marked in blue) 

 

The MLP trained on unbalanced data and all variables already achieve very good prediction 
accuracies with accuracy values of 90.6 in the first study semester to 96.3 percent in the third 
study semester. The identification of study successes is successful with over 96 percent. 
However, the results for the identification of dropouts are significantly worse. The MLP1 
model correctly classifies only 55.3 percent of dropouts. At the very least, the Precision values 
show that three out of four students classified as dropouts were correctly classified. 

With prediction accuracies of up to 98.1 percent, the models trained on balanced and all 
variables achieve the best results. The high sensitivity values of 94.7 percent in the first study 
semester and 95.6 percent in the third study semester should be emphasised. Figure 4 shows 
that synthetic balancing leads to an almost equally accurate identification of dropouts as of 
study successes. AUC values of over 97 per cent further indicate a nearly perfect assignment 
of students by the models. 

Model Accuracy Specificity Sensitivity Precision F1-Score F2-Score Kappa AUC 

MLP 1 0.9058 0.9703 0.5532 0.7647 0.6420 0.5856 0.5909 0.8676 
MLP 12 0.9380 0.9655 0.7321 0.8200 0.7736 0.7481 0.7283 0.9241 
MLP 123 0.9626 0.9656 0.8364 0.8364 0.8364 0.8364 0.8020 0.9511 

MLP 1B 0.9063 0.9009 0.9470 0.9191 0.9329 0.9413 0.8503 0.9745 
MLP 12B 0.9388 0.9909 0.9044 0.9919 0.9461 0.9206 0.8861 0.9802 
MLP 123B 0.9807 0.9640 0.9562 0.9704 0.9632 0.9590 0.9186 0.9850 
         

MLP 1E 0.8875 0.9740 0.5745 0.7941 0.6667 0.6081 0.6191 0.8542 
MLP 12E 0.9163 0.9655 0.7500 0.8235 0.7850 0.7636 0.7415 0.9021 
MLP 123E 0.9398 0.9656 0.7818 0.8269 0.8037 0.7904 0.7639 0.9375 

MLP 1EB 0.8387 0.8468 0.8939 0.8741 0.8839 0.8899 0.7424 0.9288 
MLP 12EB 0.8857 0.9273 0.8971 0.9385 0.9173 0.9051 0.8201 0.9612 
MLP 123EB 0.9091 0.9369 0.9051 0.9466 0.9254 0.9131 0.8377 0.9832 



 9 

Compared to the models with all variables and unbalanced data, the models with balanced 
data have consistently better accuracy values. Furthermore, the identification of study 
discontinuations improves significantly through synthetic balancing: the sensitivity increases 
by up to 39 percentage points. Likewise, the balanced models with higher AUC values show a 
higher probability of assigning students to the correct class. In contrast to the non-balanced 
models, the kappa values are above the limit of 0.8, indicating a very good improvement of 
the models compared to random models. Figure 4 illustrates that the balanced models 
outperform the unbalanced models not only in terms of sensitivity. The red ROC curves are 
consistently below the blue ROC curves. If a cut-off value is chosen so that the sensitivity is 
higher than 90 percent, the unbalanced models achieve significantly worse specificity values. 
In summary, the balanced models are clearly better suited for predicting dropout. 

 
Figure 4: ROC-curves of the models with balanced (blue) and unbalanced (red) datasets with all variables 
included 

The models trained on unbalanced data and exclusively with the extracted variables achieve 
very good prediction accuracies with accuracy values of 88.7 percent in the first study 
semester to 93.9 percent in the third study semester. The identification of study successes is 
successful with over 96 percent. However, the results for the identification of dropouts are 
significantly worse. The MLP1E model correctly classifies only 57.4 percent of dropouts. The 
ROC curves in Figure 5 illustrate the strong focus of the models on the correct classification of 
study successes. At the very least, the Precision values show that students classified as 
dropouts were correctly classified with a probability of over 79 per cent. 

By synthetically balancing the data, the sensitivity values can be increased to 89.3 to 90.1 
percent (MLP 1EB, 12EB, 123EB). However, the identification of study success deteriorates by 
up to 12 percentage points. Figure 5 illustrates the trade-off between increased sensitivity and 
reduced specificity. The accuracy of the models also decreases. Overall, however, the models 
improve over random models: the kappa values are significantly higher and are above 0.8 in 
the second and third semester. Furthermore, the balanced models with higher AUC values 
show a greater probability of assigning students to the correct class. 
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The models trained on unbalanced data and exclusively with the extracted variables differ 
from the models trained on all variables only by a few percentage points. While Accuracy and 
AUC are slightly worse, Sensitivity and Kappa provide slightly better values, at least for the 
first two study semesters. Consequently, the prediction of dropout is already successful with 
little aggregated data. In contrast, the models trained on balanced data and exclusively with 
the extracted variables show significantly worse results than the models trained on all 
variables. The sensitivity values increase less and are constantly five percentage points below 
the values of MLP 1B, 12B and 123B. Furthermore, both the probabilities that a student 
classified as a dropout was correctly classified (Precision values) and the Accuracy and 
Specificity values are lower than in all other models. The improvement in the prediction of 
dropouts achieved by balancing thus deteriorates the models to a disproportionate extent.   

 
Figure 5: ROC-curves of the models with balanced (blue) and unbalanced (red) datasets with only extracted 
variables 

5.2. Validation per semester 

By cross-validation, overfitting of the models could be excluded. The test data was selected 
on a random basis. For actual use, however, the models must be able to predict student 
dropout in future semesters based on data from previous semesters. The models must be 
sufficiently generalised to maintain their predictive quality despite changing conditions within 
the university (e.g. exam changes). For this reason, this work, like the initial study, undertook 
a check of the models with training data from previous semesters and test data from the 
following semester. For example, the MLP 1 2010 model was trained with data up to and 
including 2009 and validated with 2010 data. Table 4 contains the results of the performance 
metrics. 

The results show that the models are robust to test data from future semesters. In particular, 
the results with the unbalanced datasets differ little from the results of the MLP 1 model. 
Compared to the accuracy of 90.6 percent of the MLP 1 model, the accuracy of the models 
hardly varies. While the specificity of the models is slightly worse than in MLP 1, sensitivity 
and precision are better in all models than in MLP 1. For the test data from 2009, 2010 and 
2012, sensitivity increases by more than 12 percentage points. Similarly, these models provide 
higher values for kappa. The lower value of kappa and the poorer prediction of dropouts of 
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the MLP 1 2011 model reflect the fact that there were significantly fewer dropouts among 
first-year students in 2010 than among the other cohorts. This resulted in a larger share of the 
majority class in the training dataset. 

Table 4: Results of the validation of the models MLP 1 and MLP 1B with test data from previous semesters 

Model Accuracy Specificity Sensitivity Precision F1-Score F2-Score Kappa AUC 

MLP 1 2009 0.8953 0.9374 0.6824 0.6824 0.6824 0.6824 0.6197 0.9140 
MLP 1 2010 0.9295 0.9550 0.7612 0.7183 0.7391 0.7522 0.6984 0.9179 
MLP 1 2011 0.8991 0.9452 0.5811 0.6056 0.5931 0.5858 0.5356 0.8579 
MLP 1 2012 0.8741 0.8943 0.8000 0.6729 0.7310 0.7709 0.6496 0.8869 

MLP 1B 2009 0.8588 0.9588 0.7588 0.9485 0.8431 0.7904 0.7176 0.9506 
MLP 1B 2010 0.8619 0.9552 0.7687 0.9450 0.8478 0.7985 0.7239 0.9420 
MLP 1B 2011 0.7635 0.9662 0.5608 0.9432 0.7034 0.6103 0.5270 0.8796 
MLP 1B 2012 0.8722 0.8778 0.8667 0.8764 0.8715 0.8686 0.7444 0.9223 

 

Compared to the unbalanced models, the balanced models are less robust to test data from 
future semesters. None of the models achieves an accuracy of 90.6 per cent (MLP 1B). 
Similarly, the values of the other performance metrics are below those of MLP 1B. Only the 
specificity has better results with over 95 percent in the models MLP 1 2009 to 2011. If, on the 
other hand, one compares the balanced with the unbalanced models, they still deliver good 
results. Accuracy is lower, but specificity, sensitivity and kappa tend to have higher values.  

6. Discussion 

The aim of this work was to improve the prediction quality compared to the models of the 
initial study by classification with neural networks. This succeeds with both the unbalanced 
and balanced data sets. While the original study can identify dropouts in the first (third) 
semester with an accuracy of 76.4 (89.6) percent, the neural networks of this study achieve 
sensitivity values of 94.7 (95.6) percent. They not only achieve a better identification of 
dropouts, but also an overall higher prediction accuracy: the accuracy of the neural networks 
is 90.6 (98.1) percent in the first (third) semester, whereas the best accuracy value of the initial 
study is 88.1 (95.3) percent (cf. Table 3 and Table 5 in Appendix A). Furthermore, the kappa 
values show that the neural networks already achieve a very good improvement over a 
random model from the first semester onwards. With the decision trees and logit models, on 
the other hand, only the kappa values of the models LR 3U, DT 3U and DT 2B are above the 
limit of 0.8. 

The different results for the models with synthetically balanced and unbalanced data should 
be emphasised. The accuracy of the neural networks is higher in all models than that of the 
decision trees and logit models (cf. Table 3 and Table 5 in Appendix A). In addition, the 
accuracy of the balanced models of this work increases compared to the accuracy of the 
unbalanced models, while the accuracy of the models of the initial study decreases. In 
contrast, sensitivity and precision of the neural networks using unbalanced data are lower 
than for decision trees and logit models. Similarly, kappa assumes worse values for neural 
networks. For unbalanced data, decision trees and logit models therefore deliver better 
results in terms of identifying study dropouts. Neural networks, on the other hand, offer 
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significantly better predictions overall for balanced models. The improvement of the 
prediction quality through synthetic balancing of the data is consistent with the findings of 
(Delen, 2010). 

To ensure the robustness of the decision trees with respect to the training and test data, the 
initial study (as well as this paper) performed a ten-fold cross-validation. The results of both 
studies demonstrate the robustness of the models. Nevertheless, there is a higher difference 
between the accuracy values of the decision trees than between those of the neural networks 
(cf. Table 6 in Appendix A and Table 11 in Appendix B). The model DT 1U, for example, shows 
a deviation of 9 percentage points between minimum and maximum accuracy, while the 
deviation for model MLP 1 is only 6 percentage points. Consequently, neural networks are 
better suited to generalise the problem. 

Finally, both the original study and the present study validated the models with training data 
from previous semesters and test data from the following semester. While the accuracy values 
differ only slightly, the identification of study dropouts is significantly better with the neural 
networks (cf. Table 4 and Table 7 in Appendix A). The sensitivity is 9 (test semester 2009) to 
42 (test semester 2012) percentage points higher than with the decision trees. Furthermore, 
the consistently higher kappa values of the neural networks illustrate that the models of this 
work still perform well in this test scenario compared to random models, whereas the models 
of the initial study only achieve a moderate improvement. 

In summary, the neural networks of this work not only offer more accurate predictions than 
the models of the original study, but also better generalisation properties and more robust 
results. 

7. Conclusion 

In the context of this work, prediction models for dropout were developed with the help of 
neural networks and study progress data. These models enable predictions regarding study 
success and dropout with an accuracy of up to 91 and 98 percent in the first and third 
semester, respectively. In particular, the identification of dropouts is already successful in the 
first semester with a sensitivity of 95 percent. Compared to the initial study, the prediction of 
dropouts is thus improved. This confirms the thesis that neural networks are better able to 
grasp the complexity of the problem and at the same time achieve excellent generalisation. 

Compared to the methods of the initial study, the neural networks show better forecasting 
accuracies. Nevertheless, the decision trees and logit models have non-negligible advantages 
over neural networks. For example, neural networks are significantly more difficult to analyse 
due to their complexity and, in contrast to decision trees and logit models, they do not offer 
any explanatory components, so that their decisions are not comprehensible. However, 
especially when predicting dropout, an explanation of the decision is important in order to 
identify possible causes or to be able to advise students in a meaningful way. With regard to 
the actual use of the models in higher education, a combination of these machine methods is 
therefore recommended. 
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Appendix A 

Table 5: Results of the initial study for all models (Kemper, Vorhoff, & Wigger, 2020) 

 

 
Table 6: Accuracy of the decision trees of the initial study (not balanced models) on test data with ten-fold 
cross-validation (Kemper, Vorhoff, & Wigger, 2020) 

 

 
Table 7: Results of the validation of the model DT 1U with test data from previous semesters (Kemper, Vorhoff, 
& Wigger, 2020) 
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Appendix B 

Table 8: Overview of all datasets used for the classification 

Dataset Included semester Included variables  Balanced data  

1 Semester 1 All variables No 
1B Semester 1 All variables Yes 
1E Semester 1 Extracted variables No 
1EB Semester 1 Extracted variables Yes 

12 Semester 1 to 2 All variables No 
12B Semester 1 to 2 All variables Yes 
12E Semester 1 to 2 Extracted variables No 
12EB Semester 1 to 2 Extracted variables Yes 

123 Semester 1 to 3 All variables No 
123B Semester 1 to 3 All variables Yes 
123E Semester 1 to 3 Extracted variables No 
123EB Semester 1 to 3 Extracted variables Yes 

 
Table 9: Type of selection and value range for the hyperparameter tuning 

Hyperparameter Selection type  Value range 

Number of hidden layers Random search 1 to 4 
Number of neurons per layer Random search 16 to 256 
Optimization function Manuel  Adam, SGD, RMSprob 
Activation function Random search Fermi, ReLu, Tanh 
Loss function Manuel Mean squared error, binary crossentropy 
Learning rate Random search 0.1 to 0.00001 
Dropout Random search 0 to 0.4 
Batch Manuel 32, 64, 128  
Number of training epochs Manuel 20, 50, 100 
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Table 10: Resulting hyperparameter values of all MLP models after applying random research and achieved 
accuracy on validation data 

Model ɛ h Number of neurons Activation function Dropout Accuracy 

MLP 1 0.01 2 32/96/64 tanh/relu/relu 0.35/0.15/0.35 0.9082 
MLP 1B 0.01 3 32/32/192/64 tanh/tanh/relu/fermi 0.1/0.1/0/0.35 0.9259 
MLP 1E 0.01 3 32/192/96/64 tanh/tanh/tanh/fermi 0.15/0.1/0/0.1 0.9146 
MLP 1EB 0.01 2 128/128/32 tanh/tanh/relu 0.1/0.05/0.2 0.8724 

MLP 12 0.01 2 32/32/224 relu/relu/relu 0.2/0.3/0.25 0.9243 
MLP 12B 0.01 1 64/96 tanh/tanh 0.3/0.4 0.9431 
MLP 12E 0.01 2 128/96/128 tanh/tanh/fermi 0.3/0.15/0.3 0.9274 
MLP 12EB 0.001 2 224/160/160 fermi/tanh/tanh 0.15/0.25/0.15 0.9106 

MLP 123 0.01 2 64/160/32 relu/tanh/relu 0.15/0.05/0.15 0.9432 
MLP 123B 0.001 1 160/160 tanh/tanh 0.05/0.3 0.9597 
MLP 123E 0.001 3 128/96/64/64 relu/tanh/relu/relu 0.15/0/0.15/0.35 0.9338 
MLP 123EB 0.01 1 96/192 fermi/relu 0.35/0.4 0.9194 

 
Table 11: Accuracy of the MLP models on test data with ten-fold cross-validation 

Model 1 2 3 4 5 6 7 8 9 10 

MLP 1 0.8944 0.9085 0.9263 0.9049 0.8982 0.8803 0.9263 0.8877 0.9401 0.9058 
MLP 1B 0.9132 0.9041 0.9087 0.8991 0.8767 0.8904 0.9406 0.9269 0.8904 0.9132 
MLP 1E 0.8592 0.8838 0.8912 0.8803 0.8912 0.8697 0.9088 0.8979 0.8772 0.9155 
MLP 1EB 0.8676 0.8676 0.8037 0.8532 0.8128 0.8311 0.8447 0.8265 0.8311 0.8493 

MLP 12 0.9266 0.9371 0.9544 0.9301 0.9263 0.9298 0.9509 0.9298 0.9404 0.9545 
MLP 12B 0.9776 0.9324 0.9054 0.9459 0.9595 0.9058 0.9414 0.9324 0.9685 0.9189 
MLP 12E 0.9161 0.9161 0.9228 0.9056 0.9053 0.9193 0.9088 0.9123 0.9298 0.9266 
MLP 12EB 0.9148 0.8694 0.8604 0.9144 0.8739 0.8610 0.8739 0.8919 0.9324 0.8649 

MLP 123 0.9545 0.9720 0.9580 0.9510 0.9825 0.9615 0.9615 0.9720 0.9474 0.9650 
MLP 123B 0.9777 0.9910 0.9686 0.9910 0.9865 0.9821 0.9596 0.9955 0.9821 0.9731 
MLP 123E 0.9371 0.9545 0.9476 0.9301 0.9580 0.9371 0.9301 0.9510 0.9193 0.9336 
MLP 123EB 0.8705 0.9372 0.8879 0.9238 0.9103 0.9238 0.9058 0.9152 0.9283 0.8879 
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