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Abstract

There are two sets of clients exogenously pre-matched in battles. Each

client needs help from an agent to fight the battle. We study the stability of

matchings of the form: agent-client × opponent client-opponent agent. Clients

and agents are objectively ranked. The existence and characteristics of stable

matchings depend on the structure of the prematching of clients. We propose

a novel notion of comparing two-sided matchings in terms of assortativity, by

representing them as partial orders. More extensive partial orders correspond

to more positive assortative prematchings. If the prematching is close to neg-

ative assortative, a stable matching always exists. In any stable matching the

induced matching between agents can be at most as positive assortative as the

prematching. We provide two domains of preferences for which a stable match-

ing always exists. We show that stability and core notions are independent,

but stable matchings are always efficient.
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“Good lawyers worry about facts.

Great lawyers worry about their opponents.”

Suits (Season 1; Ep. 7)

1 Introduction

Consider a set of legal disputes. Each dispute represents a conflict between two indi-

viduals – a plaintiff and a defendant, but both the plaintiff and the defendant need a

lawyer to represent them. How are lawyers matched with the disputes? Alternatively,

consider electoral races in multiple districts. Which politicians run where and against

whom? There is a similarity between these two scenarios. In both cases, there is a set

of predetermined battles between two sides: be it legal disputes between the plaintiffs

and the attorneys, or political conflicts between the local left-wing and right-wing

partisans. However, the battles are not resolved by the sides fighting directly, but

rather through an agent representing a given side: lawyers in the case of legal disputes

and political candidates in political races. In such environments which matchings are

stable when both the sides of the battle and the agents have preferences over their

entire match? Do stable matchings exist in general?

In this paper, we propose a four-sided matching model with conflict of interest

and provide an analysis of stability in this setting. There is a finite number of battles

and each battle consists of two clients that are in conflict with each other. We call the

two-sided one-to-one matching of clients through battles a prematching. Each client

needs the help of an agent in her battle. Agents are split into two sets according

to the sides of the battles they can be matched with. We analyze the matchings

between agents and clients, where each match is a quadruple of the form agent-client

× opponent client- opponent agent. Clients have preferences over pairs of their agent

and the opponent agent (following e.g., Becker 1973, Burdett and Coles 1997, Chade

and Eeckhout 2020). Agents have preferences over pairs of their client and opponent

agent. There is an objective ranking of both the agents and the clients. Clients prefer

to be matched with better agents and their opponents to match with worse agents.

Agents prefer to be matched with better clients and to face worse opponent agents.

As the prematching is given, the objective ranking of clients captures the preferences

of the agents over battles. Agents may have heterogeneous preferences over how they

prioritize matching with better clients over worse agents. Moreover, there does not
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need to be an agreement on the ranking of battles across sides.

The focus of our analysis is the stability of matchings. We adopt the classical

notion of pairwise stability [Gale and Shapley, 1962] to our setting. We call a matching

(pairwise) stable when no agent-client pair on the same side forms a blocking pair,

treating the matching of the other side as given. This notion is consistent with

environments with conflicts where communication within each side is much easier

than across sides. Although we do not provide a theory about how stable matchings

arise, we believe that there are several environments in which stability is important.

First, we can think of completely centralized markets in which some authority can

decide on the allocation. An example of such an environment is the allocation of

public attorneys and prosecutors to criminal cases with indigent defendants. There is

evidence that market participants consider unstable allocations unjust. For example,

Fleeta Drumgo sued the Superior Court of Marin Country for not granting his request

to appoint Richard Hodge as his attorney, while Richard Hodge was ready and willing

to do so (Drumgo vs Superior Court, 1973). Although Drumgo lost the case, the

ruling was not unanimous with one judge dissenting, arguing that the criminal justice

system may lose legitimacy if the indigent defendants are not allowed to choose their

representation from a set of lawyers willing to represent them. Due to similar concerns,

in 2015 Comel county (Texas) introduced a system in which indigent defendants could

choose their own lawyers, successfully improving the perception about the legitimacy

of the system in the eyes of the defendants [Nugent-Borakove and Cruz, 2017]. Second,

our model is important for markets in which there are two separate clearinghouses,

each responsible for one side of the battle. An example of such an environment is the

allocation of candidates to political races by political parties. If a party consistently

assigns politicians in an unstable way, popular politicians may decide to leave the

party and run independently. Indeed, there is a large body of evidence in which

political parties introduce primary elections in order to mitigate intra-party conflict

[Ichino and Nathan, 2012, De Luca et al., 2002]. Primaries have the potential to

mitigate the instability of assignments. If a Democratic candidate ran in California

rather than in Texas, and they were believed to be more popular among voters in

California than the current party nominee there, they could challenge the nominee

in primaries and block the allocation. Finally, stable allocations are a natural first

prediction for decentralized markets [Burdett and Coles, 1997, Echenique and Yariv,

2012]. The market for attorneys in legal cases fits our structure especially well. The
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fees for attorneys are heavily regulated and there is little variance in the contracts

offered on the market with a standard contract charging 33% of the amount won (see

Helland and Tabarrok 2003 for an overview of regulation in the US). As a result, the

market for civil legal services essentially becomes a matching market without transfers

(or contracts). If an allocation in such a market consistently deviates from a stable

allocation, it means that some good lawyers consistently accept cases of little value,

while they could be working on valuable cases. As such, it is natural to expect that

over time the market allocation should become close to stable.

Our central contribution is to observe that stable matchings and their character-

istics crucially depend on the structure of the prematching of clients. In particular, a

stable matching is guaranteed to exist whenever battles which are attractive for one

side tend to be less attractive for the other side. In other words, if a prematching is

close to negative assortative then a stable matching always exists. The prematching

determines whether two strong agents can oppose one another in a stable match-

ing. We show that, in a sense, the matching of the agents has to be more negative

assortative than the prematching.

We first study an important case where the prematching of clients is a negative

assortative matching (NAM), capturing situations in which the battles are primarily

differentiated by their difficulty. That is, if a battle is easy and attractive for agents

on one side, it should be difficult and unattractive for the agents on the other side.

There always exists a stable matching, in particular a positive assortative matching

(PAM) matching of agents and clients is stable for all preferences. There can be

multiple stable matchings, however, and in any such matching agents need to be

matched negatively assortatively.

In Section 4, we allow for any type of prematching of clients so that we can analyze

situations in which some battles are appealing for agents on both sides. In general,

prematchings can be neither positive nor negative assortative. We develop a novel

tool of describing assortativity in the intermediate cases. With that aim we propose

a relation of Positive Assortative dominance (PA-dominance) over the set of battles.

We say a battle PA-dominates another battle when the former is more attractive for

agents on both sides. The PA-dominance relation allows us to think of prematchings

as partially ordered sets. More extensive partially ordered sets correspond to more

positive assortative prematchings. This notion can be used for any two-sided matching

with objective rankings, including the matching of agents on opposing sides.
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Our first observation is that the existence of a stable prematching is not guaran-

teed, as is the case in general for multi-sided matchings [Alkan, 1988]. We show that

a stable matching exists for any preference profile if and only if the prematching is

bipartite, i.e., it can be partitioned into two sets in such a way that all PA-dominance

relations go from one set to another. We provide an algorithm based on serial dicta-

torship which finds a stable matching if the prematching is bipartite. Additionally,

we provide two preference domains for which a stable matching exists irrespective of

the prematching. Literature on multiple-sided matchings and matchings with exter-

nalities shows that stable matchings exist under various forms of lexicographic prefer-

ences[Danilov, 2003, Eriksson et al., 2006, Huang, 2010, Dutta and Massó, 1997]. In

our setting we are able to generalize this result to a domain of threshold preferences.

An agent with threshold preferences has an ordered partition of battles and always

prefers battles from better groups but is concerned only with the opponent within

each group. Furthermore, we show that the domain of threshold preferences is rich

enough that for any matching that is stable under some preference profile it is also

stable under some threshold preference profile. Finally, we consider a setting in which

clients can be split into two types (similarly to e.g., Chade and Eeckhout 2020). In

this environment, the agents are not interested in the exact identity of their client,

but only in whether she is of a “good” or a “bad” type. Then, a stable matching

always exists.

In Section 4.2, we move to the analysis of the characteristics of stable matchings.

Namely, we describe a set of potentially stable matchings, that is, matchings which can

be stable for some preference profile given a prematching. A matching is potentially

stable if and only if the PA dominance relation is preserved from the pairs of agents to

the pairs of clients that those agents match. Using this characterization, we provide

a map from prematchings to the set of potentially stable agent matchings that can be

observed at any given prematching. We prove that an agent matching is supported by

a prematching if and only if it is at most as positive assortative as the prematching.

That is, the partially ordered set describing the prematching needs to be isomorphic

to some extension of the partially ordered set describing the matching of agents. This

result suggests that the negative assortative matchings of agents should be commonly

observed, whereas the positive assortative matchings of agents should be rare.

Finally, in Section 5 we explore the relation between our stability notion, effi-

ciency and core. We first prove that stability implies efficiency. In our setting core
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significantly differs from pairwise stability because it requires cooperation from all

four sides of the matching, which is hardly possible in conflict scenarios. Moreover,

the core often has little predictive power, and it is possible that the entire set of

matchings is in the core. Still, if the clients are more concerned with their opponents’

agents than with their own agents, stable matchings may not belong to the core.

There are several articles studying matching problems in environments where the

conflict is relevant. Kamali Shahdadi [2018] proposes a theoretical model of assigning

public attorneys to indigent defendants, when the attorneys are subject to moral

hazard. Agan et al. [2021] and Shem-Tov [2020] provide an empirical analysis of

the assignment of public attorneys. However, they study the problem as a two-sided

matching problem of defendants to attorneys, ignoring possible effects of the resulting

matchings of prosecutors and attorneys. To our knowledge Iossa and Jullien [2012]

is the only article considering the market for legal services as a four-sided market,

in which both the attorney and the plaintiff hire lawyers and the outcome of the

case depends on the entire match. However, Iossa and Jullien [2012] focus on the

interplay of the career concerns of judges and the certification system of lawyers. As

such, the lawyers can be of only two types: certified or not certified. Moreover, they

sidestep the problems with defining and analyzing stability by assuming that the

matching procedure is sequential and one side can commit to the choice of lawyer.

Galasso and Nannicini [2011] consider the allocation of politicians to political races

by two competing parties. The politicians can only be one of two types (expert or

loyalist), and the parties allocate the politicians in order to maximize the likelihood of

winning the election. Parties are assumed to have absolute power over the allocations,

and the resulting assignments do not need to be stable. Our analysis complements

Galasso and Nannicini [2011] as it describes allocations which are implementable when

parties have no leverage over their members. In that sense, the results of Galasso and

Nannicini [2011] are more applicable in countries with strong political parties while

ours work better in countries with weak political parties.

Instead of four-sided matching, our setting can be thought of as matching with

across-markets externalities. A matching of agents and clients on one side generates

an externality on the other side and the prematching of the clients describes the exter-

nality structure. Sasaki and Toda [1996] and Hafalir [2008] propose stability notions

in which the agents form a conjecture about the effect that their pair will have on

the whole market before they decide to block. Our stability notion is more restric-
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tive, as it allows the agents and the clients to ignore the reaction of the opponents

while forming a blocking pair. It is similar to, for example, Pycia and Yenmez [2021]

and Mumcu and Saglam [2010] in one-to-one matching environments. Similarly to

our setting, the existence of stable matchings when externalities are present is not

ensured. We provide the conditions for existence not only in terms of preference do-

mains but also in terms of the externality structure. We follow recent literature in

describing the assortativity properties of matchings with externalities [Chen, 2019,

Chade and Eeckhout, 2020, Chen, 2021]. In particular, Chade and Eeckhout [2020]

propose an example of firms competing in a Cournot duopoly in different markets and

hiring workers which will influence the cost functions of the firms. As the competing

firms are exogenously fixed into pairs, this example is conceptually similar to our

framework. Leaving aside the technical differences (e.g., they study a transferable

utility framework), while Chade and Eeckhout [2020] assume that the prematching of

firms is PAM, one of the main goals of our article is to study the connection between

the assortativity of the prematching and the assortativity of stable agent matchings.

As such, we allow for arbitrary prematchings, and show that the client prematching

always generates a tight upper bound on how positive assortative the matching of

agents can be.

In our framework, agent matchings are intermediated by the prematching of bat-

tles. In this sense, our paper is related to the models of two-sided matchings where

each matched couple is also matched to an object so that all agents have preferences

over both agents and objects. Examples of such models include matching with con-

tracts [Hatfield and Milgrom, 2005], matching with projects [Nicolo et al., 2019], and

matching with ownership [Combe, 2021]. In a related model of matching through in-

termediaries, Raghavan [2021] studies a three-sided matching where firms and workers

match by mutually accepting the match offers generated by the intermediaries. Our

model is different from these as the battles that intermediate the agent matchings

consist of prematched clients who also have preferences over matches. The solution

concepts that are relevant in our setting, in particular the (pairwise) stability and

core, are defined by allowing clients to participate in blocking pairs and coalitions,

respectively.

Our paper is organized as follows. Section 2 lays out our model. Section 3 studies

the environment in which the prematching is negative assortative. Section 4 general-

izes the results for arbitrary prematchings. Finally, Section 5 discusses efficiency and
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the core in our setting.

2 The Model

There are two equal-sized sets of clients B = {b1, . . . , bk, . . . , bn} and D = {d1, . . .,
dl, . . . , dn} for some finite number n. Let N = {1, . . . , n} denote the set of indices.

Each client in B is prematched with a unique client in D to compete for some prize.

C ⊆ B ×D denotes a one-to-one matching between clients, and we call such a client

matching a prematching as we take it as given for each matching problem. We denote

an element of C by ckl ≡ (bk, dl) and think of ckl as a battle fought between the clients

bk and dl. C denotes the set of all possible prematchings. The clients require the help

of agents in their battles. Let A = {a1, . . . , ai, . . . , an} and E = {e1, . . . , ej, . . . en} be

the sets of agents that the clients in B and D, respectively, can be matched with. In

the Online Appendix we relax this assumption and allow the agents to change sides.1

Given C ∈ C, we are interested in one-to-one matchings between agents and clients

and the induced matching between the agents. A matching µ ⊆ A × B × D × E is

a set of quadruples such that |µ| = n, for all h ∈ N , ah, bh, dh, and eh respectively

appear at exactly one quadruple in µ, and finally (ai, bk, dl, ej) ∈ µ implies ckl ∈ C.

LetMC denote the set of all feasible matchings under C. For a given µ ∈MC , as the

prematching C is fixed, the match of agent ai, µ(ai), effectively consists of a b-client

and an opponent agent. Therefore, µ(ai) = (bk, ej) if (ai, bk, dl, ej) ∈ µ, and in that

case we say µe(ai) = ej and µb(ai) = bk. Similarly, the match of bk is µ(bk) and

µ(bk) = (ai, ej) if (ai, bk, dl, ej) ∈ µ. Analogous functions for e-agents and d-clients

are defined in the same way. A matching µ can be split into several partial matchings

that are two-sided one-to-one matchings. For example, a matching between a-agents

and battles, or a-agents and e-agents. Given µ, (ai, bk, dl, ej) ∈ µ only if (ai, ckl) is

an element of the partial matching µac; µec and µae are similarly defined. To refer

to an arbitrary matching between the agents we use η ⊆ A× E and call it an agent

matching. η is a set of pairs such that |η| = n and for all h ∈ N , ah and eh respectively

appear at exactly one pair in η. H denotes the set of all agent matchings.

All agents and clients have strict and rational preferences over the set of all their

potential matches. For all ai ∈ A, bk ∈ B, dl ∈ D, and ej ∈ E, let �ai , �bk, �dl ,
1Online Appendix can be accessed from https://drive.google.com/file/d/

1v93V2j32Vc8r7t4vxjL1iafdT9QxBWXY/view?usp=sharing
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and �ej denote the preference of ai, bk, dl, and ej, respectively. Preferences of agents

and clients over matchings follow solely from their preferences over their matches and

they are indifferent between any two matchings if their match is the same under these

matchings. For any given C ∈ C and for any agent ai ∈ A, the alternative set of ai is

B × E. Any alternative (bk, ej) corresponds to the match (ai, ckl, ej) where ckl ∈ C.

Similarly, for any bk ∈ B, dl ∈ D, and ej ∈ E, the alternative sets are A×E, A×E,

and A × D, respectively. As the prematching is fixed, the preference relation over

clients already captures the preferences of agents over the opposing client and the

whole battle.

We assume that there is an objective ranking of both agents and clients. All agents

prefer to match with a “better” client and a “worse” opponent agent, and similarly

all clients prefer to match with a “better” agent and their opponent client to match

with a “worse” agent. Assumption 1 below formalizes this restriction.

Assumption 1. For all ai ∈ A and ej ∈ E,

∀k, k′ ∈ N, k < k′ =⇒ (bk, ej) �ai (bk′ , ej)

∀l, l′ ∈ N, l < l′ =⇒ (ai, dl) �ej (ai, dl′)

∀j′, k ∈ N, j > j′ =⇒ (bk, ej) �ai (bk, ej′)

∀i′, l ∈ N, i > i′ =⇒ (ai, dl) �ej (ai′ , dl),

and for all bk ∈ B and dl ∈ D

∀i, i′, j ∈ N, i < i′ =⇒ (ai, ej) �bk (ai′ , ej)

∀i, j, j′ ∈ N, j < j′ =⇒ (ai, ej) �dl (ai, ej′)

∀i, j, j′ ∈ N, j > j′ =⇒ (ai, ej) �bk (ai, ej′)

∀i, i′, j ∈ N, i > i′ =⇒ (ai, ej) �dl (ai′ , ej)

As Assumption 1 introduces an objective ordering of both agents and clients, in

which lower ranking corresponds to a “better” agent or client. In practical terms

Assumption 1 requires that the degree of specialization of agents is limited. For

example, politicians can be characterized by some overall popularity level which is

not strongly dependent on the state they are running in; lawyers are characterized by

some skill which is relatively easily transferable across cases, etc.
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Fixing A, B, D, E, and a prematching C, a matching problem is defined solely

by a preference profile � = (�ah,�bh,�dh,�eh)h∈N ∈ R, where R denotes the set of all

preference profiles that satisfy Assumption 1.

Assumption 1 allows for heterogeneous preference profiles where different agents

differently prioritize being matched to a better client or a worse opponent agent.

Definition 1 below introduces lexicographic preferences which uniformly prioritize

either the clients or opponent agents.

Definition 1. Two types of lexicographic preferences for a-agents and b-clients are

defined as follows (they are similarly defined for e-agents and d-clients):

(i) �ai is client-lexicographic if for all k, k′, j, j′ with k < k′, (bk, ej) �ai (bk′ , ej′).

(ii) �ai is opponent-lexicographic if for all k, k′, j, j′ with j′ < j, (bk, ej) �ai (bk′ , ej′).

(iii) �bk is agent-lexicographic if for all i, i′, j, j′ with i < i′, (ai, ej) �bk (ai′ , ej′).

(iv) �bk is opponent-lexicographic if for all i, i′, j, j′ with j′ < j, (ai, ej) �bk (ai′ , ej′).

Threshold preferences, as defined below, substantially generalize lexicographic

preferences.

Definition 2. A threshold preference �ai for agent ai is defined solely by an ordered

partition {B1
i , . . . , B

mi
i } of B in the following way:

bk ∈ Br
i , bk′ ∈ Br′

i , and r < r′ =⇒ (bk, ej) �ai (bk′ , ej′) for all j, j′

bk, bk′ ∈ Br
i and j′ < j =⇒ (bk, ej) �ai (bk′ , ej′)

�ei is defined similarly by an ordered partition {D1
j , . . . , D

mj

j } of D.

Threshold preferences capture the main source of the heterogeneity of preferences

in our model. Although rankings over both clients and opponents are fixed, dif-

ferent agents can care to a different degree about the strength of their opponent

and the quality of their client. If all agents have threshold preferences, those whose

preferences are characterized by a finer partition are primarily concerned with the

quality of their client, whereas those whose preferences are characterized by a coarser

partition are primarily concerned with the strength of their opponent. Indeed, a

client-lexicographic preference and an opponent-lexicographic preference for an agent

are special cases of a threshold preference where each one is defined by a partition of

cardinality n and 1, respectively.
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2.1 Solution concept

We define our stability notion in the following way. Fix a prematching C ∈ C and a

matching µ ∈MC . We say that the agent-client pair (ai, bk) (or (ej, dl)) is a blocking

pair at µ or (ai, bk) ((ej, dl)) blocks µ if

(bk, µ
e(bk)) �ai µ(ai) and (ai, µ

e(bk)) �bk µ(bk)

(or (µa(dl), dl) �ej µ(ej) and (µa(dl), ej) �dl µ(dl))

Definition 3. Given a prematching C and a preference profile �∈ R, a matching

µ ∈MC is stable if there is no blocking pair at µ.

Our stability notion is an adaptation of the pairwise stability for two-sided match-

ings. An agent and a client on one side treat the matching of the opposing side as

given. Stability requires that no agent and client simultaneously prefer to be matched

with each other to their current matches.

Figure 1: For any preference profile, the matching on the left is not stable; (a1, b1) is a blocking
pair. The matching on the right is stable if a1 and e1 have client-lexicographic preferences. If a1
has opponent-lexicographic preferences, (a1, b2) is a blocking pair.

To understand our stability notion in the context of classical pairwise stability

[Gale and Shapley, 1962], fix not only the prematching of clients but also one side of

the agent-client matching. We call a matching which does not have a blocking pair

on one side a stable response for that side.

Definition 4. A matching µ is called an ab (ed) stable response if there is no ab (ed)

blocking pair.

In a sense, the relation between our stability notion and a stable response corre-

sponds to the relation between a Nash equilibrium and a best response.

Remark 1. µ is stable if and only if it is simultaneously an ab and ed stable response.
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We are concerned not only with finding stable matchings given the preferences,

but also with making testable predictions for situations in which only the rankings of

agents and battles are known. For this purpose we propose a notion of a potentially

stable matching.

Definition 5. Given a prematching C, we say that a matching µ ∈MC is potentially

stable if there is a preference profile �∈ R such that µ is stable at �.

Note that the matching in Figure 1 on the left is not potentially stable as (a1, b1)

is a blocking pair independent of the preference profile. On the other hand, the

matching on the right is potentially stable. Understanding possible agent matchings

is one of our primary concerns in this work. Therefore, we define the notion of agent

matchings supported by a given C as follows.

Definition 6. Given a prematching C, we say that an agent matching η is supported

by C if there is a preference profile �∈ R and a matching µ ∈ MC such that µ is

stable at � and η = µae.

For both matchings in Figure 1, the induced agent matching is µae = {(a1, e1), (a2, e2)}.
As there is a profile for which one of these matchings is stable, η = {(a1, e1), (a2, e2)}
is supported by C = {c11, c22}.

3 The Negative Assortative Prematchings

As we discuss in Section 4, the set of stable matchings depends on the prematching

C, which we can think of as the given environment. A natural environment to start

with is one in which battles that are ranked highly by one side of the conflict have

a low ranking for the other side. Civil litigation can be thought of as an example of

such an environment. If there is strong evidence or a case law supporting plaintiff’s

position, the trial will be easy to win for the plaintiff, but difficult to win for the

defendant. In a political race if a left-wing party tends to be popular in a given

region, a left-wing candidate will have an easy time winning the race while a right-

wing candidate will have a hard time. More generally, we are thinking of a situation

in which the primary concern of both agents and clients is winning a battle, and the

likelihood that the battle is won can be influenced by the talent of the agent and some

innate characteristics of the battle itself. Only one side can win, and the larger the
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probability of winning is for one side, the lower it is for the other side. In this sense

client b1 fights in the battle with the most favorable characteristics for the ab side,

and by extension the least favorable characteristics for the de side. Hence, client b1

should be prematched with client dn; similarly client b2 should be prematched with

client dn−1, and so on. This is the negative assortative prematching CNAM which

we can formally define as follows. C = CNAM if for all k and l, ckl ∈ C implies

l = n − k + 1. The negative assortative agent matching ηNAM is similarly defined,

i.e., η = ηNAM if for all i and j, (ai, ej) ∈ ηNAM implies j = n − i + 1. Theorem 1

characterizes stable matchings in this environment.

Theorem 1. If C = CNAM , the following hold:

i) For any �∈ R, µ̄ = {(ai, bi, dn−i+1, en−i+1)i∈N} is always a stable matching.

ii) µ is potentially stable if and only if ηNAM = µae.

iii) ηNAM is the only client matching supported by CNAM .

All proofs are in Appendix A unless otherwise stated.

Figure 2: The leftmost matching is stable under any preferences, as both a1 and e1 are matched
with the best client and the worst opponent agent. The matching in the middle is stable when a1
and e1 have lexicographic preferences for opponent agents, but not stable if one of them has client
lexicographic preferences. The rightmost matching is never stable as (a1, b1) forms a blocking pair.

There are three important implications of Theorem 1. First, if the client matching

is CNAM , a stable matching always exists. Second, there is a large set of potentially

stable matchings given CNAM , consisting of all those where agents are matched neg-

atively assortatively. Third, ηNAM is the only agent matching supported by CNAM .

These three observations will guide our analysis in the general setup.

4 All Prematchings

In this section, we allow for any prematching. For example, an extreme case opposite

to CNAM is a positive assortative prematching CPAM , where a-agents and e-agents
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agree on the ranking of the battles. Formally, C = CPAM if for all k and l, ckl ∈ C
implies k = l (ηPAM can be similarly defined for the agent matchings). We can think

of CPAM representing an environment in which the battles are primarily differentiated

by characteristics influencing the costs and benefits of fighting them. For example,

legal cases can have different complexities, and a case which requires a lot of costly

preparation for the plaintiff may also require a lot of preparation for the defendant.

Political races can differ by prestige and importance, and a race important for the

left-wing may also be important for the right-wing, and vice versa.

In many environments multiple factors can play a role, and some battles that the

a-agents like may be disliked by the e-agents, whereas other battles can be favored

by both sides. These environments are not characterized by CNAM nor CPAM , but

rather by some C in-between those two extremes. To describe these intermediate

scenarios we introduce the notion of Positive Assortative dominance (henceforth, PA-

dominance) of battles. We say that a battle ckl PA-dominates ck′l′ , if ckl is better

for both sides than ck′l′ . For that to happen it needs to be that the client on any

given side of the battle ckl is better than the client on the same side of the battle

ck′l′ . Hence, in a sense, the two pairs of agents are positively assortatively prematched

relative to each other. Formally, we define the PA-dominance relation as follows.

Definition 7. Given C ∈ C, we say that (bk, dl) ∈ C PA-dominates (bk′ , dl′) ∈ C

(or simply ckl PA-dominates ck′l′) whenever k < k′ and l < l′. τ(C) denotes the PA-

dominance relation defined over the set C, t(C) = |τ(C)|, and Γτ (C) is the directed

graph representing τ(C).

The notion of PA-dominance allows us to think of prematchings as partial orders.

Roughly speaking more extensive partial orders represent more positive assortative

matchings. Indeed, the positive assortative prematching is represented by a linear

order in which any pair of clients can be compared in terms of PA-dominance, and

negative assortative matching is represented by an empty partial order in which no

two pairs can be compared. t(C) corresponds to the number of pairs that are related

to each other in terms of PA-dominance in the prematching C. We can also interpret

it as a measure of distance between C and CNAM . As τ(C) is a partial order, Γτ (C)

is a directed acyclic graph. Naturally, the idea of PA-dominance applies not only to

prematchings, but to all two-sided matchings with an objective ranking on each side,

including an agent matching η.
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In this section we generalize the findings of Section 3 to the general setup. In

Section 4.1 we discuss the conditions under which a stable matching is guaranteed to

exist. Section 4.2 describes the set of potentially stable matchings for a given C and

the set of agents matchings supported by a given C.

4.1 Existence

In the standard two-sided matching context, the existence of a stable matching is es-

tablished by the celebrated Gale-Shapley algorithm. However, existence is not guar-

anteed for a three-sided matching [Alkan, 1988]; that is, there are preference profiles

at which there is no stable matching. As we discuss in Section 5, our stability notion

and the notion of core, which requires no deviation from elements (four-tuples) of a

matching, are independent. Therefore, literature on matching does not immediately

provide arguments or intuition for the existence of stable matchings in our model. In

the case of CNAM , the existence of a stable matching is established by Theorem 1.

Indeed, the result is stronger: there is a matching which is stable for any preference

profile. This matching has the following special feature. The best agents on each side

are matched with the best clients and the worst agents on the other side, in other

words, they get the option which is universally best for any preference satisfying As-

sumption 1. Given that, the second best agents have their best options among those

available, and so on. Whenever such a matching is feasible, it is stable under any

preference satisfying Assumption 1. Therefore, existence follows from the negatively

assortative structure of CNAM . Consider the following example with CPAM .

Example 1. Let n = 3, C = CPAM = {c11, c22, c33}, and � be defined as follows:

a2 and e2 have client-lexicographic preferences. Moreover, �a1: . . . �a1 (b1, e2) �a1
(b3, e3) �a1 (b2, e2) �a1 (b1, e1) �a1 . . ., and �e1: (a3, d1) �e1 (a3, d2) �e1 (a2, d1) �e1
(a1, d1) �e1 (a2, d2) �e1 (a1, d2) �e1 (a3, d3) �e1 . . ..

Here, there is no stable matching. To see that, suppose µ is stable at �. Note that

µd(e1) ∈ {d1, d2} and µd(e2) ∈ {d1, d2}. Therefore, µd(e3) = d3. If µb(a1) ∈ {b1, b2},
µd(e1) = d1. Then, (a1, b3) blocks µ. If µb(a1) = b3, µ

b(a2) = b1 and µd(e2) = d1.

Then, (a1, b1) blocks µ.

What if C is neither CNAM nor CPAM? Indeed, for n = 3, it is possible to study

every prematching and show that the existence of a stable matching is guaranteed

for all other cases by brute force. However, we will show CPAM is not the only
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prematching where we may not have stable matchings for some problems when n > 3.

Indeed, even if a matching does not contain a positive assortative chunk of three

consecutive battles, a stable matching may fail to exist. The common factor leading

to nonexistence for these prematchings is that they all have three battles which can

be linearly ordered in terms of PA-dominance. We call all the prematchings which

do not include this structure bipartite.

Definition 8. A prematching C ∈ C is bipartite (with respect to PA-dominance) if

there is a partition {C1, C2} such that c ∈ C PA-dominates c′ ∈ C only if c ∈ C1 and

c′ ∈ C2.

Intuitively, bipartiteness requires that no battle simultaneously PA-dominates and

is PA-dominated. Note that CNAM is bipartite as no battles are related in terms of

PA-dominance at all, and the above condition trivially holds. Indeed, if three battles

in C can be linearly ordered in terms of PA-dominance, as in Example 1, it is not

bipartite since a dominated battle PA-dominates another battle. If there are no

such three battles, C is obviously bipartite. Moreover, bipartite prematchings are

represented by bipartite graphs.

It is easy to see that bipartidness cannot be violated if t(C) < 3, and for n = 3

CPAM is the only prematching which has three such relations. Hence, five out of six

prematchings are bipartite. While n grows, the ratio of bipartite matchings to those

which are not bipartite decreases. However, it is still not very rare that a prematching

is bipartite. Consider the following prematching: C = {c15, c26, c32, c44, c51, c63}. C is

nontrivially far from CNAM . If we use t(.) as a measure, t(C) = 4 while t(CNAM) = 0,

and still C is bipartite. In contrast, Ĉ = {c16, c25, c34, c41, c52, c63} is not bipartite,

even though, t(Ĉ) = 3.

We show in Theorem 2 that it is possible to generalize the idea of the argument

proving nonexistence for Example 1 if C is not bipartite. Moreover, we demonstrate

that if C is bipartite a stable matching exists for any preference profile. The proof is

constructive.

We propose an algorithm to search for a stable matching. The algorithm starts

from a matching which is PAM of a-agents to b-clients and is an ed stable response.

Then, we change the matching by eliminating any ab blocking pairs. However, the

new matching we obtain can have ed blocking pairs. In the next step we eliminate

them, and repeat the procedure until there are no blocking pairs left on any side.

Eliminating blocking pairs on a given side can be achieved by a serial dictatorship.
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Figure 3: C can be partitioned in C1 = {c15, c32, c51} and C2 = {c26, c44, c63} in line with Defini-
tion 8. This is equivalent to the condition that Γτ (C) is a bipartite directed graph with all arrows
routing from the nodes in the same set and pointing to the nodes in the complement of this set.
Γτ (Ĉ) cannot be justified as a bipartite graph as an arrow routs from c52 while there is another
arrow pointing to c52.

Remark 2. µ is an ab stable response if and only if it can be generated by the following

procedure. Fix the matching of e-agents to battles µec, and allow a1 to choose her best

alternative in µec, a2 to choose the best option among the remaining alternatives in

µec, and so on.

Given Remark 2, we can implement an algorithm searching for a stable matching

by sequentially generating ab and ed stable responses.

Algorithm 1 (The stable response algorithm). Fix C. At step 0, start with the

matching µ0 such that µac0 is PAM (µb(ai) = bi for all i ∈ N) and µ0 is an ed stable

response. For all the odd steps s ∈ {1, 3, 5...} of the algorithm, µecs = µecs−1 and µs is an

ab stable response. For all the even steps s ∈ {2, 4, 6...} of the algorithm, µacs = µacs−1

and µs is an ed stable response. The algorithm ends if µs = µs−1.

Remark 3. If the stable response algorithm ends at some finite step s, then the

resulting matching µs is stable.

Although Algorithm 1 in general may not terminate even if a stable matching

exists. As long as the prematching is bipartite it is guaranteed to stop. To build an

intuition for why it is the case we consider the following example.

Example 2. Let n = 4, C = {c12, c21, c34, c43}, and � be defined as follows: a1

and e1 have client-lexicographic preferences, a2 and e2 have opponent-lexicographic

preferences. Moreover, �a3: . . . �a3 (b4, e3) �a3 (b2, e1) �a3 (b3, e2) �a3 . . ., and �e3: . . .

�e3 (a3, d4) �e3 (a1, d2) �e3 (a2, d3) �e3 . . .
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In Example 2 the algorithm generates the following sequence of matchings: µ0 =

{(a1, c12, e4), (a2, c21, e1), (a3, c34, e3), (a4, c43, e2)}, µ1 = {(a1, c12, e4), (a3, c21, e1),

(a2, c34, e3), (a4, c43, e2)}, µ2 = {(a1, c12, e3), (a3, c21, e1), (a2, c34, e4), (a4, c43, e2)}.
Then, µ3 = µ2 and the algorithm terminates. A closer look at this sequence reveals

that at each step b3 becomes better-off. At step s = 1 the position of b3 improves

because he is now matched with agent a2 rather than a3. As a result, d4 (who is

prematched with b3) becomes less attractive for an e-agent at step 2 compared to

step 0. At step s = 2 agent e3 leaves d4 and is replaced by agent e4. The position of

b3 improves again.

This is no coincidence. In general, each step of the algorithm follows a similar

pattern. Strong a-agents matched with b-clients in C1 tend to leave to b-clients in

C2. As a response, strong e-agents matched with d-clients in C2 leave to be matched

with d-clients in C1. This feeds back to the remaining strong a-agents matched with

b-clients in C1, etc. As a result, at every step of the algorithm at least some b-clients

in C2 become better-off while none become worse-off. Once this observation is made,

it is enough to note that there is a limit to how well-off a client can be and the

algorithm needs to cease. We summarize our results in Theorem 2.

Theorem 2. Let C ∈ C. A stable matching µ ∈MC exists for all �∈ R if and only

if C is bipartite.

Theorem 2 characterizes all the environments in which a stable matching is guar-

anteed to exist for all the preference profiles. In the remainder of this section we focus

on the complementary question, and we propose two preference domains for which a

stable matching always exists.

First, we consider threshold preferences. It is enough that agents on one side have

threshold preferences, and Algorithm 1 (or its analogue starting from µ0 being ab

stable) is guaranteed to find a stable matching in a single step. Moreover, as it will

become clearer in Section 4.2, any potentially stable matching can be rationalized

using only threshold preferences.

Proposition 1. Let C be any prematching. If �∈ R is such that every e-agent has

threshold preferences, then Algorithm 1 finds a stable matching at �.2

2A mirror image of Algorithm 1, in which µ0 is PAM of e-agents to d-clients and an ab stable
response is guaranteed to find a stable matching if every a-agent has a threshold preference.
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Second, we consider agent preferences with clients of binary type. In applied

theory it is often assumed that market participants can be split into two groups or

types: “high” and “low”, “good” and “bad”, etc. Members of each group are almost

identical. For example, political races can be split into important and insignificant,

defendants can be split into likely guilty and likely innocent (see Chade and Eeckhout

2020 for an application for technology development in a matching environment). In

our setting, a situation in which clients have binary types can be defined as follows.

Definition 9. A preference profile �∈ R is induced by b-clients of binary type if

there exists a partition of B into BH and BL such that for all i, j, j′, k, k′ ∈ N if

(bk, ej) �ai (bk′ , ej′) and bk ∈ BH (bk ∈ BL), then for all bk′′ ∈ BH (bk′′ ∈ BL)

(bk′′ , ej) �ai (bk′ , ej′).

An analogous definition can be used for d-clients. Indeed, Definition 9 says that

the clients can be split into two sets, and as far as the agents are concerned, the

characteristics of each client are fully summarized by the set they belong to. The

ranking of the clients within a set is just an arbitrary rule of resolving ties. Binary

type restriction is not related to threshold preferences. On one hand, it is more

restrictive because it requires that the clients are partitioned into two groups and

the partition is the same for every agent. On the other hand, it allows the agents

to prefer being matched with a “low” client and a weak opponent to a “high” client

and a strong opponent. Indeed, threshold preference domain is a Cartesian product

preference domain while profiles induced by clients of binary type is not. Example 3

shows the distinction between the two cases.

Example 3. Consider the following preference profile of a-agents.

�a1: (b1, e3) �a1 (b2, e3) �a1 (b1, e2) �a1 (b2, e2) �a1 (b3, e3) �a1 (b3, e2) �a1 (b1, e1) �a1
(b2, e1) �a1 (b3, e1).

�a2: (b1, e3) �a2 (b2, e3) �a2 (b3, e3) �a2 (b1, e2) �a2 (b2, e2) �a2 (b1, e1) �a2 (b2, e1) �a2
(b3, e2) �a2 (b3, e1).

�a3 is opponent lexicographic.

The preference profile in Example 3 is induced by b-clients of binary type. To be

precise BH = {b1, b2}, BL = {b3}. Still, the preferences of all agents are different and

only agent a3 has threshold preferences.

Even though the assumption that types of clients are binary is a restriction on the

preferences of agents there is a tight connection between it and bipartite prematchings.
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As the “high” and “low” clients are almost identical, the exact way in which they

are ranked is irrelevant for the stability of the matching. Hence, if some matching is

stable for a bipartite prematching, it will remain stable for any prematching, as long

as the set of “high” and “low” clients remains the same.

Proposition 2. If a preference profile is induced by b-clients or d-clients who have

binary types, then a stable matching exists.

Note that for both Proposition 1 and Proposition 2 it is enough that agents on one

side have restricted preferences. It allows for some flexibility of the model. Consider

a situation in which the plaintiffs are split into two groups: “good” plaintiffs hold

cases which are simple and easy to win, “bad” plaintiffs hold cases which are complex

and hard to win. Such a division may not be achievable on the defendant side, for

example, as the cases which are easy to win for the defendant are also complex and

time-consuming. Still, Proposition 2 ensures that a stable matching exists.

4.2 Potentially stable matchings and supported agent match-

ings

In Theorem 1 we found an exact relation between the prematching CNAM and the

supported agent matching. In this section, we provide a characterization which shows

that the set of supported agent matchings expands in a nontrivial fashion as the

prematching becomes more positive assortative. Before we move to this result, we

fully characterize the set of potentially stable matchings.

Theorem 3. Fix C ∈ C. µ ∈ MC is a potentially stable matching if and only if for

all (ai, bk, dl, ej), (ai′ , bk′ , dl′ , ej′) ∈ µ, if (ai, ej) PA-dominates (ai′ , ej′), then (bk, dl)

PA-dominates (bk′ , dl′).

A consequence of Theorem 3 is that the PA-dominance relation between pairs of

agents must be preserved by their clients in a matching for stability. The intuition

behind this result is that if two strong agents are matched with each other in some

battle that both of them consider unattractive, at least one strong agent would im-

mediately block the matching with some client that holds a more attractive battle

and has a weaker opponent.

Indeed, without precise information about the preferences of the agents, the extent

to which our model can make a testable prediction is exactly described by preserving
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the PA-dominance from agent matchings to client matchings. We use threshold pref-

erences to show that any matching preserving the PA-dominance relation is indeed

stable for some preference profile. We characterize the preference of each agent by

a bipartition of clients, the first element of the partition being the set of all clients

that are at least as good as the one that the agent is matched with. This gives us the

following remark.

Remark 4. If matching µ is potentially stable, then it is stable at some preference

profile �∈ R at which all agents have threshold preferences.

Theorem 3 builds intuition on which agent matchings can be supported by a given

prematching. It suggests that the agent matching can be, in some way, only as positive

assortative as the prematching. Otherwise, the PA-dominance relation could not be

preserved from agents to clients. Indeed, that is the reason for which ηNAM is the

only supported agent matching by CNAM . However, the agent matching can always

be less positive assortative than the prematching, as the PA-dominance relation needs

to be preserved only from agent matchings to prematchings but not the other way

around. Indeed, any agent matching which is negative assortative is potentially stable

independent of the choice of C. To see how an agent matching cannot be supported

if it is “too positively assortative” consider the following example.

Example 4. n = 3, C = {(b1, d1), (b2, d3), (b3, d2)}, η = {(a1, e1), (a2, e2), (a3, e3)}.

Note that t(η) = 3 while t(C) = 2. Therefore, it is immediately obvious that

for any matching µ ∈ MC such that µae = η, PA-dominance relation over the agent

matching cannot be preserved by the C. Then, η is not supported by C according to

Theorem 2, or equivalently, regardless of the preferences of the agents and the clients,

agents cannot match as in η given the prematching C under any stable matching.

The cardinality of τ(η) should not be more than that of τ(C). This is a necessary

condition for η to be supported by C. This fact will be a corollary of our next result.

With the help of the following example we show that it is not a sufficient condition

for η to be supported by C.

Example 5. n = 4, C = {(b1, d3), (b2, d2), (b3, d1), (b4, d4)}, η = {(a1, e1), (a2, e4),

(a3, e3), (a4, e2)}.

Note that t(C) = t(η) = 3. However, to verify that η is not supported by C, it

is enough to consider the graphs Γτ (C) and Γτ (η) which are depicted in Figure 4. η
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is supported by C only if there is µ ∈ MC which can be thought of as a one-to-one

matching between C and η that satisfies the condition in Theorem 3. Therefore, the

pair (a1, e1) needs to be matched with one of the nodes in Γτ (C). As (a1, e1) PA-

dominates three ae pairs that are part of such a matching µ, the bd pair with which

(a1, e1) is matched under µ also needs to PA-dominate at least three bd pairs. This

is obviously impossible given Γτ (C).

Figure 4: The graph on the left corresponds to Γτ (C) for C in Example 5 and the graph on the
right corresponds to Γτ (η) for C in Example 5.

The exercise above gives us a clear hint about the relevant structure we need in

order to characterize the supported agent matchings by a given C. Disregarding the

labels in the graphs of η and C, the graph of τ(η) should be a subgraph τ(C). The

following notion of subgraph isomorphism summarizes this condition.

Definition 10. For any C ∈ C and η ∈ H, Γτ (C) is subgraph isomorphic to Γτ (η)

if Γτ (η) can be obtained from Γτ (C) by using only two types of changes: relabeling

vertices and deleting edges.

In our setting Γτ (C) (Γτ (η)) represents the partial order induced by the PA-

dominance relation on a prematching (an agent matching). If Γτ (C) is subgraph

isomorphic to Γτ (η), then τ(C) is isomorphic to some extension of τ(η). In that

sense if Γτ (C) is subgraph isomorphic to Γτ (η), we can say that C is more positive

assortative than η. Indeed, Γτ (C
PAM) is a complete graph and is subgraph isomorphic

to Γτ (η) for any η. On the contrary Γτ (C
NAM) is an empty graph and is subgraph

isomorphic only to ηNAM .

Theorem 4. A matching of agents η can be supported by a prematching of clients C

if and only if Γτ (C) is subgraph isomorphic to Γτ (η).

The main message of Theorem 4 is that agent matchings close to ηNAM should

be more common than agent matchings close to ηPAM . Those closer to ηNAM are
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supported by almost any prematching while those that are closer to ηPAM are only

supported by very positive assortative prematchings. In particular, ηNAM is supported

by any C, and ηPAM only by CPAM .

Additionally, Theorem 4 identifies settings in which our model gives sharp testable

predictions even without knowledge of individual preferences. If t(C) is small, the

majority of agent matchings can be eliminated. For example, no agent matching with

t(η) > t(C) is supported by C. More generally, if C is subgraph isomorphic to C ′ then

the set of agent matchings supported by C ′ is a subset of agent matchings supported

by C. Hence, as we move toward CNAM the predictions of our model become sharper.

Corollary 1. For any C, C ′, and η, if t(C) < t(η), η is not supported by C. More-

over, if C is subgraph isomorphic to C ′, any agent matching supported by C ′ is also

supported by C.

Figure 5: Graphs of all six prematchings when n = 3. Each graph is subgraph isomorphic to
any graph in the column to the left of it. Graphs of prematchings {c12, c23, c31} and {c13, c21, c32}
are simultaneusly subgraph isomorphic to each other (as they differ only in the labels). Graphs of
prematchings {c11, c23, c32} and {c12, c21, c33} are not comparable.

Finally, Theorem 4 provides the structure determining which agent matchings can

be supported by which prematchings: partial order induced by PA-dominance rela-

tion. It allows us to identify structurally identical prematchings which will generate

exactly the same testable predictions in terms of supported agent matchings. Con-

sider Example 6 to see two distinct prematchings with the same underlying structure.

Example 6. C = {c15, c23, c34, c41, c52}, C ′ = {c14, c25, c33, c41, c52}.
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5 Efficiency and Core

The standard core stability notion coincides with pairwise stability for two-sided one-

to-one matchings without externalities. An immediate consequence of this is that

pairwise stable matchings are also efficient. In our model, the core boils down to

requiring no deviations by quadruples for the same reason the core is equivalent

to pairwise stability in two-sided one-to-one matching environments. Our stability

notion, however, is defined relative to deviations by agent-client couples from the same

side but not by coalitions across the sides. Therefore, there is no prior reason to expect

that stable matchings in our environment will coincide with the ones in the core or the

efficient ones. In this section, we show that every stable matching is efficient but core

stability and our pairwise stability notion are logically independent. Furthermore, we

provide a domain of preferences within those satisfying Assumption 1, which we call

“non-spiteful” client preferences, on which our stability notion is a refinement of the

core.

We start our analysis with the welfare analysis based on Pareto efficiency.

Definition 11. Given any C ∈ C and � ∈ R, a matching µ is efficient if no matching

µ′ Pareto dominates µ, i.e., if for any other matching µ′ such that an agent or a client

in A∪B ∪D ∪E prefers µ′ to µ, there is an agent or a client in A∪B ∪D ∪E who

prefers µ to µ′ and.

Below, we provide examples of inefficient matchings for two entirely opposite pre-

matchings.

Example 7. Let |N | = 3 and C = CNAM and consider the following two matchings:

µ = {(a2, b1, d3, e1), (a3, b2, d2, e3), (a1, b3, d1, e2)},
µ′ = {(a3, b1, d3, e2), (a1, b2, d2, e1), (a2, b3, d1, e3)}.
Suppose that the preferences for the agents and the clients are as follows. a1, a3,

e1, and e3 have client-lexicographic preferences. a2 and e2 have opponent-lexicographic

preferences. b1, b3, d1, and d3 have opponent-lexicographic preferences. b2 and d2 have

agent-lexicographic preferences. Then, µ′ Pareto dominates µ.

Example 8. Let |N | = 4 and C = CPAM and consider the following two matchings:

µ = {(a2, b1, d1, e2), (a1, b2, d2, e3), (a3, b3, d3, e1), (a4, b4, d4, e4)},
µ′ = {(a1, b1, d1, e1), (a2, b2, d2, e4), (a4, b3, d3, e2), (a3, b4, d4, e3)}.
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Suppose that the preferences for the agents and the clients are as follows. a1, a4,

e1, and e4 have client-lexicographic preferences. a2, e2, a3, and e3 have opponent-

lexicographic preferences. b2, b3, d2, and d3 have opponent-lexicographic preferences.

b1, b4, d1, and d4 have agent-lexicographic preferences. Then, µ′ Pareto dominates µ.

It is easy to see that the matchings µ in Example 7 and Example 8 are not stable

for the preferences at which they are Pareto dominated. In both Example 7 and

Example 8, the pair (a1, b1) blocks µ.

Proposition 3. Let C ∈ C and � ∈ R. If µ ∈MC is stable at �, then µ is efficient

at �.

A matching in the core is stable against all deviations by any coalition K such

that K ∈ A ∪ B ∪ D ∪ E. Note that whenever there is a coalition that blocks a

matching, there should also be a quadruple of the form (ai, bk, dl, ej) that blocks the

matching. Therefore, it is sufficient to define the core according to deviations by such

quadruples.

In the literature on multi-sided matchings, the stability notion is often defined in

a consistent way with the core [See Alkan, 1988, for example] provided here. Our

motivation for adopting the stability notion, which does not require deviations across

the sides, is that for most applications it is easier to imagine situations where agents

and clients on the same side can make agreements while the communication between

competing agents is much more limited. Still, stable matchings which belong to the

core can be thought of as especially robust. They survive even the possibility of

reaching an “across the aisle agreement” of two opposing clients. As we show, under

some restrictions on the preferences of the clients, any stable matching is in the core.

Definition 12. For any �∈ R and C ∈ C, a quadruple (ai, bk, dl, ej) ∈ A×B×D×E
blocks µ ∈ MC if all agents and clients in the quadruple prefer to match with each

other over their current matches in µ. A subset of matchings CO(�) ⊆MC is called

the core if for any matching µ ∈ CO(�) there does not exist a blocking quadruple.

A matching is in the core, if there does not exist a quadruple (ai, bk, dl, ej) that

prefers to coordinate and match each other instead of their current matches. Such

a coordination requires an alignment of preferences of competing clients bk and dl

as well as the agents ai and ej. However, it is easy to come up with a preference

profile at which every matching is in the core. Consider the � such that all b-clients
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have agent-lexicographic preferences and all d-clients have opponent-lexicographic

preferences. Then, b-clients and d-clients have completely opposite preferences over

the set of their potential matches A × E. Therefore, any matching is in CO(�)

independent of the prematching.

We show below that unless clients are willing to de-escalate the intensity of their

battle by simultaneously decreasing the quality of their agents, stability is a refinement

of the core.

Proposition 4. Fix C ∈ C and �∈ R, and let µ ∈MC be stable at �. A quadruple

(ai, bk, dl, ej) blocks µ with µa(bk) = ai′ and µe(dl) = ej′ only if i′ < i and j′ < j.

In many applications, it is easy to imagine situations where clients are more con-

cerned with their own agents rather than their opponents’. Then they do not prefer

to have a worse agent even if that means the opponent client is getting a worse agent

as well. In such cases, whenever there is a quadruple that blocks a matching, it could

only be because both agents are better than those in their current matchings. How-

ever, this is not possible under Proposition 4. Therefore, any stable matching would

belong to the core. “Non-spiteful” preferences defined below formalize this intuition.

Definition 13. Fix any prematching C ∈ C. A preference profile � is called non-

spiteful between clients if for any (bk, dl) ∈ c, (ai, ej) �bk (ai′ , ej′) and (ai, ej) �dl
(ai′ , ej′) implies i < i′ or j < j′.

As a direct corollary of Proposition 4, stability is a refinement of the core on the

domain of non-spiteful preferences between clients.

Corollary 2. For any C ∈ C and �∈ R which is non-spiteful between clients, every

stable matching belongs to the core.

Even if a preference profile is not non-spiteful between clients, the set of stable

matchings is occasionally a subset of the core as a blocking quadruple also requires

the coordination of agents and hence the preferences of agents matter. The following

example illustrates a situation where this is not the case.

Example 9. n = 3, C = CNAM . All the agents have opponent-lexicographic prefer-

ences. b1, b3, d1, and d3 have agent-lexicographic preferences. b2 and d2 are opponent

lexicographic.
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Note that every matching µ such that µae = ηNAM is stable. Hence, there are

six stable matchings. However, the only potential blocking quadruple (a3, b2, d2, e3)

at a stable µ, blocks µ if and only if (a2, b2, d2, e2) /∈ µ as otherwise either b2 or d2

is matched with the best agent on her side. Therefore, only four out of six stable

matchings are in the core. Then, as we have situations where every matching is in

the core, stability and the core are logically independent.

Remark 5. For any n > 2, the solution concepts core and stability are logically

independent.

In our framework, stability and the core are logically independent because the

type of coalitions that can block a matching under these two concepts are different.

For stability, an agent-client pair on the same side may block a matching; while for

the core, a coalition of two agent-client pairs, one from each side can block. For each

side of the agent-client matching, the matchings on the other side create externalities.

Our stability notion does not internalize these externalities while the core does. A

similar conclusion, that the core and stability are different, is proved by Sasaki and

Toda [1996] in an environment of two-sided matchings with externalities.

6 Conclusion

We study a problem of matching agents to fighting clients. To do so, we develop a

notion of stability applicable in this setting and characterize conditions under which

stable matchings exist. Additionally, we characterize the matchings which can be

stable for some preference profile. The central testable prediction of the model is

that negative assortative agent matchings are more common than positive assortative

agent matchings. Our analysis leaves a large space for extensions.

In the Online Appendix we relax the assumption that the agents form two distinct

sets, and allow agents to switch sides. Several results, including Theorem 1 and

Proposition 1, survive the extension. However, if the agents can switch sides of the

battle, there is no unique way of expressing the prematching as a two-sided matching.

Hence, all the results related to the notion of PA-dominance, including theorems 2–

4, become more nuanced. As there are more potential blocking pairs, existence is

harder to sustain. Although there is no longer a simple map from a prematching

to a set of supportable matchings, the central message of Theorem 4 stands and
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negative assortative matchings of agents are easier to support than positive assortative

matchings.

Although we characterize the stable matchings, we do not propose a theory on how

they can be reached. Whether stable matchings can be achieved in a decentralized

market or through some centralized allocation mechanism is left for further research.

Moreover, as a benchmark model, we disregard the possibility of transferable utility

and contracts while the matching is one-to-one and the structure of fought battles is

exogenous. In several applications, some or all of these assumptions are violated. A

particular example is the formation of research teams that compete in patent races.

We propose two applications of our setting: the allocation of candidates to political

races and the allocation of lawyers to cases. Although our model provides clear

insights about potential outcomes, a richer environment should be considered in order

to have sharper predictions.

First, in political races incumbent advantage is known to play a significant role

and modeling it requires at least partially relaxing the objective ranking assumption.

Moreover, the interests of individual politicians and the interests of political parties

may not be the same. In fact, our model suggests that they can be in conflict: strong

political candidates may sometimes prefer to run in safer races. Whereas political

parties may prefer to allocate candidates to tight races. How far the allocation from

the stable allocation is will depend on the leverage that competing political parties

have over their members.

Second, in the problem of the allocation of lawyers to legal cases, it is not nec-

essarily true that stable allocations are desirable from the perspective of society in

general. On one hand, stable allocations are guaranteed to be efficient and should be

considered fair by the participants. On the other hand, the social welfare should also

take into account how the allocation of lawyers influences the likelihood of making a

correct judgement. However, this exercise requires an additional theory on how the

talent of opposing lawyers influences the decisions of judges and juries.

A Proofs

In the proofs we write, with a slight abuse of the notation, that dl = C(bk) if ckl ∈ C,

and for any B′ ⊆ B, C(B′) = {d ∈ D : d = C(b) for some b ∈ B′} (C(D′) is similarly

defined). Moreover, we adopt the notation that ai < ai′ whenever i < i′ (and similarly
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for b-clients, d-clients, and e-agents).

Proof of Theorem 1

i) µ̄ ∈ MC . Note that (ai, bk) is a blocking pair only if ai < µ̄a(bk) and either

bk < µ̄b(ai) or µ̄e(ai) < µ̄e(bk). Let ai < µ̄a(bk) = ak. As i < k, bi = µ̄b(ai) < bk and

µ̄e(bk) = en−k+1 < en−i+1 = µ̄e(ai). Analogous reasoning holds for any ej and dl.

ii) Sufficiency. Let �∈ R be such that all the agents in A ∪ E have opponent

lexicographic preferences. It is straightforward to check µ such that ηNAM = µae is

stable at �.

Necessity. Suppose for a contradiction that µ is stable at � and agents are not

negatively assortatively matched in µ. Define i0 = min{i : µe(ai) 6= en−i+1}. Note

that µe(ai0) < en−i0+1 since for all j > n − i0 + 1 there is some i′ < i0 such that

µe(ai′) = ej by the definition of i0. Similarly, ai0 < µa(en−j+1). As µ is stable, ai0

does not form a blocking pair with µb(en−i0+1). Hence, µb(ai0) < µb(en−i0+1), and

therefore, we have µd(en−i0+1) < µd(ai0) as C = CNAM . Then (µe(ai0), µ
d(en−i0+1))

is a blocking pair. Contradiction.

iii) immediately follows from ii). �

Proof of Theorem 2

(Necessity). Let C ∈ C be not bipartite, i.e., we have k,k′,k′′,l,l′,l′′ with k < k′ < k′′

and l < l′ < l′′ such that ckl, ck′l′ , ck′′l′′ ∈ C. It suffices to construct �∈ R such that

no matching is stable at �. Let k0 = k and l0 = l, and among all battles in C \{ck0l0},
choose the battle with the best b-client that is PA-dominated by (bk0 , dl0) and call

this pair (bk1 , dl1). Note that such a battle exists as (bk′ , dl′) is a potential option.

Choose the battle in C with the best b-client that is PA-dominated by (bk1 , dl1) and

call this pair (bk2 , dl2). Note that k0 < k1 < k2 and l0 < l1 < l2 and by construction

the following holds.

(I) For all k with k0 < k < k1, ckl ∈ C implies l < l0.

(II) For all k with k1 < k < k2, ckl ∈ C implies l < l1.

Define C1 = {c1., ..., ck0−1.}, C2 = {ck0., ..., ck2.}, C3 = {ck2+1., ..., cn.}, A1 =

{a1, ..., ak0−1}, A2 = {ak0 , ..., ak2}, A3 = {ak2+1, ..., an}, B2 = {bk0 , ..., bk2}, and

D2 = C(B2), where ck. represents the battle in which bk is prematched with some

dl. Let r = n − k0 + 1 and define E1 = {e1, ..., en−k2}, E2 = {en−k2+1, ..., er}, and

E3 = {er+1, ..., en}. Let l̂ be the smallest index such that dl̂ ∈ D2 and l0 < l̂ < l2,

and let k̂ be such that ck̂l̂ ∈ C. l̂ exists as l1 ∈ D2. D′ = {dl ∈ D2 : l < l0},
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and m = n − k2 + |D′| + 1. Note that D′ is possibly empty and m < r. Define

E ′ = {en−k2+1, ..., em−1} and note that |E ′| = |D′|. Consider the preference �∈ R
satisfying the following:

(i) All a-agents except ak0 are client-lexicographic.

(ii) For all j, j′ and for all k, k′ with k ≤ k2 < k′, (bk, ej) �ak0 (bk′ , ej′).

(iii) For all j < r and for all b, b′ ∈ B2 \ {bk0} with b 6= b′, (b, er) �ak0 (b′, ej).

(iv) (bk0 , em+1) �ak0 (bk2 , er) �ak0 (bk0 , em)

(v) For all j, l, and l′, (ai, dl) �ej (ai′ , dl′) if i′ ≤ k2 < i or i′ < k0 ≤ i.

(vi) For all j, all a, a′ ∈ A2 with a 6= a′ and for all l < l2, (a, dl) �ej (a′, dl2).

(vii) For all ej ∈ E ′, all a, a′ ∈ A2 with a 6= a′, and for all l < l′, (a, dl) �ej (a′, dl′).

(viii) For all a, a′ ∈ A2 with a 6= a′, and for all l > l̂, (a, dl̂) �em (a′, dl)

(ix) (ak̂+1, dl̂) �em (ak0+1, dl0) �em (ak0 , dl0) �em (ak̂, dl̂)

Now suppose for a contradiction that µ is stable at �. Using (i) and (ii) we have

µc(A1) = C1 and µc(A3) = C3. Therefore, µc(A2) = C2 and µb(A2) = B2. Then using

(v), we have µc(E1) = C3 and µc(E3) = C1. Therefore, µc(E2) = C2 and µd(E2) = D2.

Since |E ′| = |D′|, we have µd(E ′) = D′ by (vii). Then, using definition of D′ and

(viii), we have µd(em) ∈ {dl0 , dl̂}, otherwise em would block µ together with one of

the two clients. I and II implies that for all dl ∈ D2 \ dl2 , l < l2. Then using (vi),

µd(er) = dl2 (µb(er) = bk2).

If µb(ak0) ∈ {bk0+1, ..., bk2−1}, (ak0 , bk2) blocks µ by (iii) as µb(er) = bk2 . Then

µb(ak0) ∈ {bk0 , bk2}. Suppose µb(ak0) = bk0 . Then, µb(ai) = bi for all ai ∈ A2 by (i).

Hence, µd(ak̂) = dl̂ and by (ix), µd(em) = dl0 . Then (ak0 , bk2) blocks µ by (iv).

Now let µb(ak0) = bk2 . Therefore, µb(ai) = bi−1 for all i with k0 < i ≤ k2 by

(i), and hence, µd(ak̂+1) = dl̂. By (ix), we have µd(em) = dl̂ as otherwise (in case

µd(em) = dl0) (em, dl̂) would block. Therefore, µe(bk0) ∈ {em+1, ..., er−1}, but then

(ak0 , bk0) blocks µ by (iv).

Sufficiency. Let C ∈ C be as in the statement of the theorem and �∈ R. It suffices

to show that the stable response algorithm terminates at a finite step according to

Remark 2. Note that we can partition the battles into two groups {{C1}, {C2}} such

that C1 is the set of undominated battles in terms of PA-dominance, C2 is the set

of dominated battles in terms of PA-dominance, and for all q ∈ {1, 2} and for all

c, c′ ∈ Cq, c does not PA-dominate c′. Let B1 = {bk : ck. ∈ C1}, B2 = {bk : ck. ∈ C2},
and D1, D2 be defined similarly. For all q ∈ {1, 2}, let Aqs (Eq

s) be the set of a-agents
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(e-agents) that are matched with a b-client in Bq (d-client in Dq) at matching µs.

For all q ∈ {1, 2}, we call an odd (even) step s Bq (Dq) improving if for all bk ∈ Bq

(dl ∈ Dq), we have µas(bk) ≤ µas−1(bk) (µes(dl) ≤ µes−1(dl)). We prove sufficiency using

the following claims.

Claim 1. For all s and for all q ∈ {1, 2}, Aqs are positively assortatively matched

with the clients in Bq, i.e., for all bk, bk′ ∈ Bq, we have µas(bk) < µas(bk′). A similar

argument holds for Eq
s and Dq.

Proof of Claim 1. Let s = 0. Then the claim holds by construction for both a-agents.

To see that it also holds for e-agents, fix ckl, ck′l′ ∈ Cq, without loss of generality

assume l < l′, and let µe0(dl) = ej and µe0(dl′) = ej′ . As neither of the two battles in

{ckl, ck′l′} PA-dominates the other, we have k′ < k. Since µa0(bk′) < µa0(bk), we have

j < j′ as otherwise (ej, dl) would be a blocking pair at µ0 contradicting Remark 1.

Now let the claim hold for the first s− 1 steps for both a-agents and e-agents where

s − 1 is even. Let q ∈ {1, 2}, bk, bk′ ∈ Bq with k < k′, C(bk) = dl, C(bk′) = dl′ ,

µes−1(dl) = ej and µes−1(dl′) = ej′ . As ckl and ck′l′ are not related in terms of PA-

dominance, we have l′ < l and by our induction assumption j′ < j. Suppose for a

contradiction that µas(bk′) = ai′ < µas(bk) = ai. Then, (ai′ , bk) blocks µs, contradicting

Remark 2 which states that there is no ab blocking pair. Proof for the even step s is

similar. �

Claim 2. Step 1 is B2 improving.

Proof of Claim 2. Suppose for a contradiction that step 1 is not B2 improving. Then,

there exist bk ∈ B2 such that ai = µa0(bk) < µa1(bk). Take the minimum k such that

the aforementioned condition holds. Recall that µ0 is a stable response of e-agents to

(µ)PAMac between a-agents and battles, and µ1 is the outcome of a serial dictatorship

of a-agents choosing partial matchings from (µ0)ce. Then, in round i of this serial

dictatorship procedure at step 1, no a-agents have chosen the partial matching in

(µ0)ce associated with bk as ai < µa1(bk). Therefore, bk is available for ai at step 1.

Case 1: ai ∈ A2
1. Using Claim 1, we have µb1(ai) < bk. For all k′ < k such that

bk′ ∈ B2, µa0(bk′) < ai since µ0(ai′) = bi′ for all i′ ∈ N . This contradicts that k is the

smallest index such that a b-client in B2 receives a worse a-agent at step 1 compared

to step 0.

Case 2: ai ∈ A1
1. Let µb1(ai) = bk′ and µa0(bk′) = ai′ . Consider first the case that

i < i′. Then k < k′ since µ0(ai′′) = bi′′ for all i′′ ∈ N . Let ckl, ck′l′ ∈ C, µe0(dl) = ej
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and µe0(dl′) = ej′ . Then, l′ < l as otherwise ckl PA-dominates ck′l′ which contradicts

bk′ ∈ B1. This implies that j′ < j as (ai′ , dl′) is objectively better than (ai, dl) for all

e-agents. Hence, µe1(bk) = ej and µe1(bk′) = ej′ . Then, ai would have chosen (bk, ej)

over (bk′ , ej′) at step 1.

Now consider the case i′ < i. Define (ai)
1
1 = |i′′ < i : ai′′ ∈ A2

0 and ai′′ ∈ A1
1| and

(ai)
2
1 = |i′′ < i : ai′′ ∈ A1

0 and ai′′ ∈ A2
1|. Then using Claim 1, if (ai)

2
1 < (ai)

1
1, bk′

would not be available for ai at round i of the serial dictatorship procedure at step

1, and if (ai)
1
1 < (ai)

2
1, bk is not available for ai. �

Claim 3. If an odd step s is B2 improving, then for all bk ∈ B1, µas−1(bk) ≤ µas(bk).

Proof of Claim 3. Let X = {xh1 , xh2 , ...} and X ′ = {xp1 , xp2 , ...} with |X| = |X ′| = M

be two ordered sets such that h1 < h2 < . . . and p1 < p2 < . . .. We say X ≤ X ′,

or equivalently X is component-wise not worse than X ′, if hm ≤ pm for all m ∈
{1, ...,M}. Let Āqs be the ordered set derived from Aqs where the first element in

Āqs is the a-agent with the lowest index, the second element is the a-agent with the

second lowest index, and so on. Define the ordered sets δ1(A
q
s) = Āqs \ Ā

q
s−1 and

δ2(A
q
s) = Āqs−1 \ Āqs for q ∈ {1, 2} and note that |δ1(Aqs)| = |δ2(Aqs)| as |Āqs| = |Ā

q
s−1| =

|Dq|. Moreover, as both {A1
s−1, A

2
s−1} and {A1

s, A
2
s} are partitions of A, we have

δ1(A
1
s) = δ2(A

2
s) and δ1(A

2
s) = δ2(A

1
s). Now, let s be B2 improving, and hence, we

have Ā2
s ≤ Ā2

s−1. Each new element in Ā2
s is replaced by a unique element in Ā2

s−1

that has a higher index. Therefore, δ1(A
2
s) ≤ δ2(A

2
s), and hence, δ2(A

1
s) ≤ δ1(A

1
s).

This implies that Ā1
s−1 ≤ Ā1

s, and using Claim 1 we have the desired result. �

Claim 4. If an odd step s is B2 improving, then step s+ 1 is D1 improving.

Proof of Claim 4. Let s be B2 improving and suppose for a contradiction that s+ 1

is not D1 improving. Then, there exist dl ∈ D1 such that ej = µes(dl) < µes+1(dl).

Take the minimum l such that the aforementioned condition holds. Recall that µs+1

is a stable response of e-agents to (µs)ac. Therefore, µs+1 is the outcome of a serial

dictatorship of e-agents choosing partial matchings from (µs)ac. Then, in round j

of this serial dictatorship procedure at step s + 1, no e-agent has chosen the partial

matching in (µs)ac associated with dl as ej < µes+1(dl). Therefore, dl is available for

ej.

Case 1: ej ∈ E1
s+1. Using Claim 1, we have µds+1(ej) < dl. For all l′ < l such that

dl′ ∈ D1, µes(dl′) < ej using Claim 1. This contradicts that l is the smallest index

such that a d-client in D1 receives a worse e-agent at step s+ 1 compared to step s.
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Case 2: ej ∈ E2
s+1. Let µds+1(ej) = dl′ and µes(dl′) = µes−1(dl′) = ej′ . Consider first

the case that j < j′. Since step s is B2 improving, the a-agent that dl′ is matched

with at step s (and hence at step s+1) is not worse than that at step s−1. Moreover,

the a-agent that dl is matched with at step s (and hence at step s+ 1) is not better

than that at step s − 1 using Claim 3. This contradicts that ej chose dl over dl′ at

step s − 1 in round j of the serial dictatorship of e-agents since j < j′ implies both

partial matches that are associated with dl and dl′ are available for ej. Now, consider

the case that j′ < j. Define (ej)
1
s+1 = |j′′ < j : ej′′ ∈ E2

s and ej′′ ∈ E1
s+1| and

(ej)
2
s+1 = |j′′ < j : ej′′ ∈ E1

s and ej′′ ∈ E2
s+1|. Then, by Claim 1, if (ej)

1
s+1 < (ej)

2
s+1,

dl′ is not available for ej at round j of the serial dictatorship at step s + 1; and if

(ej)
2
s+1 < (ej)

1
s+1, dl is not available for ej. �

We skip the proof for the following two claims which mimic the proof of Claims 3

and 4.

Claim 5. If an odd step s is D1 improving, then for all dl ∈ D2, µes−1(dl) ≤ µes(dl).

Claim 6. If an even step s is D1 improving, then step s+ 1 is B2 improving.

We know from Claims 2 and 6 that at each odd step including step 1, the matchings

of b-clients in B2 are weakly improving in terms of the A agents they match. The

same reasoning holds for d-clients in D1. Then, as n is finite, the algorithm terminates

at a finite step. �

Proof of Proposition 1 Run Algorithm 1 and suppose that at step s = 1 there is

some blocking pair. Using Remark 2 the blocking pair is of ed form. Take any two

(ai, bk, dl, ej), (ai′ ,bk′ ,dl′ , ej′) ∈ µ1 such that ej and dl′ form a blocking pair. Observe

that then j < j′. Moreover, it cannot be that dl ∈ Dm
j and dl′ ∈ Dm′

j for m 6= m′. In

other words, dl and d′l are in the same element of ej’s partition of clients. If m′ > m

then ej always prefers to be matched with dl rather than with d′l and (ej, dl′) would

not be a blocking pair. Similarly, if m′ < m then ej always prefers to be matched

with dm′ rather than with dm, but then µ0 is not a stable response to any µac.

As dl, dl′ ∈ Dk
j and (ej, dl′) form a blocking pair, it needs to be that i < i′. For µ1

to be a stable response to µec0 it must be that k < k′. Otherwise, using Assumption 1,

ai and bk′ block. However, if k < k′ and dl, d
′
l ∈ Dk

j then µ0 is not a stable response

to PAM of a-agents to b-clients, as ej and dl′ would block it. Contradiction. �
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Proof of Proposition 2 Without loss of generality we consider a case in which

b-clients have a binary type. First, consider a case in which C is such that for all

clk,cl′k′ ∈ C if bk, b
′
k ∈ BH with k < k then l > l′. Then, it is a corollary of Theorem 2

that the stable matching exists.

Second, consider a general case. Construct a fictional prematching Ĉ such that (i)

if bk ∈ BH and Ĉ(bk) = dl, then C(dl) ∈ BH , (ii) if k ∈ BL and Ĉ(bk) = dl, then

C(dl) ∈ BL, (iii) ckl,ck′l′ ∈ C if k < k′ and bk, bk′ ∈ BH then l > l′. Construction

of the fictional prematching amounts to a permutation of ds within groups of “good”

and “bad” bs in a way that within each group bs and ds are negatively assortatively

matched. From Theorem 2 it follows that a stable matching exists in this setting.

Take any matching which is stable at Ĉ call it µ̂, preserve the matching of a-agents

to d-clients to e-agents, and rearrange b-clients so that the prematching is given by

C and call it µ.

Suppose that the resulting matching is not stable and take some (ai, bk, dl, ej),

(ai′ , bk′ , dl′ , ej′) ∈ µ (ai, bk̂, dl, ej), (ai′ , bk̂′ , dl′ , ej′) ∈ µ̂ such that (ai, bk′) is a block-

ing pair. It cannot be that both bk, bk′ ∈ BH . Otherwise, both bk̂, bk̂′ ∈ BH and

(ai, bk̂′) would block µ̂. Analogous argument shows that both k and k′ cannot be

simultaneously in BL.

Suppose bk ∈ BL and bk′ ∈ BH , then bk̂ ∈ BL and bk̂′ ∈ BH . Moreover, since µ̂

is stable, (bk̂, ej) �ai (bk̂′ , ej). But then, using the fact that b-clients have a binary

type (bk, ej) �ai (bk′ , ej). Hence, (ai, bk′) is not a blocking pair. Analogous reasoning

applies to bk ∈ BH and bk′ ∈ BL. Contradiction. �

Proof of Theorem 3

Necessity. Let �∈ R and µ ∈ MC be stable at �, moreover, let (ai, bk, dl, ej),

(ai′ , bk′ , dl′ , ej′) ∈ µ and (ai, ej) PA-dominate (ai′ , ej′). If k′ < k, (ai, bk′) is a blocking

pair at µ. If l′ < l, (ej, dl′) is a blocking pair at µ. Then, as µ is stable, we have

k < k′ and l < l′.

Sufficiency. Take any matching µ ∈ MC and let �∈ R be such that for all i ∈
N , if µb(ai) = bk, �ai is a threshold preference defined by the ordered partition

{{b1, ..., bk}, {bk+1, ..., bn}}, and e-agents also have threshold preferences defined sim-

ilarly.

Suppose that µ is not stable at �, and without loss of generality say that there is

an ab blocking pair. Let (ai, bk, dl, ej), (ai′ , bk′ , dl′ , ej′) ∈ µ and (ai, bk′) be a blocking

pair at µ. Since (ai, ej′) �bk′ (ai′ , ej′), i < i′. As (bk′ , ej′) �ai (bk, ej), bk′ ∈ {b1, ...bk};
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and hence, k′ < k and j < j′ by definition of threshold preferences. Then, (ai, ej)

PA-dominates (ai′ , ej′) but (bk, dl) does not PA-dominate (bk′ , dl′). �

Proof of Theorem 4

Sufficiency. Take any C and η such that Γτ (C) is subgraph isomorphic to Γτ (η). As a

result there exists a bijection f(.) from η to C such that for any (ai, ej), (ai′ , ej′) ∈ η,

if there exists an edge from (ai, ej) to (ai′ , ej′), then there is an edge from f((ai, ej)) to

f((ai′ , ej′)). Use this bijection to build the matching: µ = {(ai, f((ai, ej)), ej)(ai,ej)∈η}.
Observe that by construction the PA-dominance relation is preserved from the agent

matching to the client matching. Hence, using Theorem 3, η can be supported by C.

Necessity. Take any C and η such that η is supported by C. Hence, using Theorem 3,

there exists a bijection f(.) from η to C such that for any (ai, ej), (ai′ , ej′) ∈ η for which

(ai, ej) PA-dominates (ai′ , ej′) it is the case that f((ai, ej)) PA-dominates f((ai′ , ej′)).

Take this bijection and apply it for matching vertices of Γτ (η) and Γτ (C). Observe

that, by construction, if there exists an edge from (ai, ej) to (ai′ , ej′) then there exists

an edge from f((ai, ej)) to f((ai′ , ej′)). Hence, Γτ (C) is subgraph isomorphic to

Γτ (η). �

Proof of Proposition 3

Fix C ∈ C and � ∈ R. Let µ ∈ MC be stable at � and (a1, bk, dl, ej) ∈ µ for

some k, l, j ∈ N . Suppose for a contradiction that there exists µ′ ∈ MC that Pareto

dominates µ. We first show that (a1, bk, dl, ej) ∈ µ′. Suppose not and consider first

the case (a1, bk′ , dl′ , ej′) ∈ µ′ for k 6= k′. As µ′ �dl′ µ, ej′ is a better e-agent than

µe(dl′). Then, since (bk′ , µ
e(dl′)) �a1 (bk′ , ej′) �a1 (bk, ej), (a1, bk′) would have blocked

µ. Now suppose (a1, bk, dl, ej′) ∈ µ′ for j 6= j′. Since µ′ �dl µ, ej′ is a better e-agent

than ej. This contradicts that µ′ �a1 µ. Given that a1’s match did not change, we

can repeat the same argument one-by-one for a2, a3, and so on. �

Proof of Proposition 4 Let C ∈ C and �∈ R, µ ∈ MC be stable at �, and

(ai, bk, dl, ej) block µ. Suppose without loss of generality for a contradiction that ai <

µa(bk). As dl is in the blocking quadruple, we have ej < µe(dl). Then, (bk, µ
e(dl)) �ai

(bk, ej) �ai (µb(ai), µ
e(ai)). Then (ai, bk) is a blocking pair at µ. �
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